MLR Model Selection

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's Lecture

- Model selection vs. model checking
- Stepwise model selection
- Criterion-based approaches
- Cross-validation

Model selection vs. model checking

Assume
$$y|\mathbf{x} = f(\mathbf{x}) + \epsilon$$

- model selection focuses on how you construct $f(\cdot)$;
- lacktriangle model checking asks whether the ϵ match the assumed form.

Why are you building a model in the first place? - Describing relationships - Prediction / Scientific - terting hypotheses - methodog (a) - design issue povercalc, pilot Lata

Model selection: considerations

Things to keep in mind...

- Why am I building a model? Some common answers
 - Estimate an association
 - ► Test a particular hypothesis
 - Predict new values
- What predictors will I allow?
- What predictors are needed?
- What forms for f(x) should I consider?

Different answers to these questions will yield different final models.

Model selection: realities

All models are wrong. Some are more useful than others.
- George Box

- If we are asking which is the "true" model, we will have a bad time
- In practice, issues with sample size, collinearity, and available predictors are real problems
- It is often possible to differentiate between better models and less-good models, though
- The key decisions in model selection almost always involve balancing model complexity with the potential for overfitting.

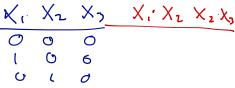
Basic idea for model selection

A very general algorithm

- Specify a "class" of models
- Define a criterion to quantify the fit of each model in the class
- Select the model that optimizes the criterion you're using
- Subject the selected model to model checking/diagnostics, possibly adjust interpretations as needed.

Again, we're focusing on f(x) in the model specification. Once you've selected a model, you should subject it to regression diagnostics — which might change or augment the class of models you specify or alter your criterion.

Classes of models



Some examples of classes of models

- Linear models including all subsets of $x_1, ..., x_p$
- Linear models including all subsets of $x_1, ..., x_p$ and their first order interactions
- All functions $f(x_1)$ such that $f''(x_1)$ is continuous
- Additive models of the form $f(\mathbf{x}) = f_1(x_1) + f_2(x_2) + f_3(x_3)...$ where $f_k''(x_k)$ is continuous

Popular criteria

penalty for model
(1) complexity

- Adjusted R²
- Residual mean square error
- Akaike Information Criterion (AIC)
- Bayes Information Criterion (BIC)
- Cross-validated error (similar to Prediction RSS, aka PRESS)
- F- or t-tests (via stepwise selection)
- Likelihood ratio tests (F-tests)

Adjusted R^2

Recall:

$$R^2 = 1 - \frac{RSS}{TSS}$$

Definition of adjusted R²:

$$R_a^2 = 1 - \frac{RSS/(n-p-1)}{TSS/(n-1)} = 1 - \frac{\hat{\sigma}_{model}^2}{\hat{\sigma}_{null}^2}$$
$$= 1 - \frac{n-1}{n-p-1}(1-R^2)$$

- Minimizing the standard error of prediction means minimizing $\hat{\sigma}^2_{model}$ which in turn means maximizing R_a^2
- Unlike with R^2 , adding a predictor will not necessarily increase R_a^2 unless it has some predictive value

Residual Mean Square Error

Equivalent to Adjusted R^2 ...

$$RMSE = \frac{RSS}{n - p - 1}$$

Can choose either based on

- the model with minimum RMSE, or
- the model that has RMSE approximately equal to the MSE from the full model

Note: minimizing RMSE is equivalent to maximizing Adjusted R^2

Sidebar: Confusing notation about *p*

p can mean different things

- p can be the number of covariates you have in your model (not including your column of 1s and the intercept
- p can be the number of betas you estimate, including β_0 .

In these slides, *p* is the former: the number of covariates.

AIC

AIC ("Akaike Information Criterion") measures goodness-of-fit through RSS (equivalently, log likelihood) and penalizes model size:

$$AIC = n \log(RSS/n) + 2(p+1)$$

- Small AIC's are better, but scores are not directly interpretable
- Penalty on model size tries to induce parsimony

Example of AIC in practice

		average duration of cross protect	tion % protected (δ)	r,*	r(t)*	loglik	df	ΔΑΙC	
No cross-protection	N		0			-902.4	3	0	
	N _a		0			-946.7	15	112.6	
	N _b		0	•		-882.9	19	-7.0	
cross	N _c		0		•	-817.2	41	-94.4	
No	N _d		0	•	•	-781.1	119	-10.7	
	E _a 0.	77 +	100			-943.3	16	107.7	
Exponential (λ)	E _b	2.23	100			-873.9	20	-23.1	
neut	E _c	1.88	100			-810.0	42	-106.9	
Expo	E _d	2.27	100			-773.5	120	-23.9	
κ· δ	F _a 0.4	48	100 (30 - 100)			-941.8	17	106.7	
jon (F _b	2.13	84 (39 - 100)	•		-870.5	21	-28.0	
durat	F _c	2.00	80 (33 - 100)		•	-807.3	43	-110.2	
Fixed duration (k ∙ δ)	F _d	1.93	76 (32 - 100)	•	•	-771.0	121	-26.8	
ш	,	1 2 3 4 5	6 7						
		average duration, in years	r = serotype-specific tran				uded		
			r(t) = seasonal transmission parameters included						
			loglik = log likelihood for the given model						
								model	
	inglik = 10g ikkelindou for the given model df = degrees of freedom of the model ΔAIC = change in Akaike Information Criterion over nu						r null	model	

Reich et al. (2013) Journal of the Royal Society Interface

BIC

BIC ("Bayes Information Criterion") similarly measures goodness-of-fit through RSS (equivalently, log likelihood) and penalizes model size:

$$BIC = n\log(RSS/n) + (p+1)\log(n)$$

- Small BIC's are better, but scores are not directly interpretable
- AIC and BIC measure goodness-of-fit through RSS, but use different penalties for model size. They won't always give the same answer

Bonus link! Bolker on AIC vs. BIC

Example of BIC in practice

Step	Number of Predictors in Model	Breslow's Thickness	DCCD	Ulceration	Age	Nodal Status ^a	Localization	Gender	віс
1	7	< 0.0001	0.0068	0.0009	0.0051	0.0371	0.1380	0.8052	1,657.8
2	6	< 0.0001	0.0069	0.0008	0.0050	0.0340	0.1035	_	1,650.9
3	5	< 0.0001	0.0011	0.0008	0.0054	0.0475	_	_	1,646.6
4	4	< 0.0001	< 0.0001	0.0005	0.0127	-	_	_	1,643.6
5 (3)	< 0.0001	< 0.0001	0.0002	-	-	_	-	1,642.9
6	2	< 0.0001	< 0.0001	_	-	-	_	-	1,649.8
7	1	< 0.0001	_	_	_	_	_	_	1,679.1

p-Values are for testing whether a hazard ratio equals 1; low BIC identifies best model.

^aAs determined by routine histopathology. doi:10.1371/journal.pmed.1001604.t004

Vasantha and Venkatesan (2014) PLoS ONE

Example of model selection in practice

TABLE 2. Results of unrestricted longitudinal latent class analysis in the Medical Research Council 1946 National Survey of Health and Development (pooled sexes, n = 3,272)

	Three classes	Four classes	Five classes
	(LLCA*-3)	(LLCA-4)	(LLCA-5)
Sequential model comparisons ($T + 1$ classes vs. T classes)	3 vs. 2	4 vs. 3	5 vs. 4
Log-likelihood value for model with $T + 1$ classes	-3,243.605	-3,211.173	-3,201.380
Log-likelihood value for model with T classes	-3,344.440	-3,243.605	-3,211.173
-2 difference in log-likelihood	201.669	64.863	19.587
Difference in no. of parameters (T + 1 classes vs. T classes)	7	8	8
Lo-Mendell-Rubin adjusted LRT* value	198.171	63.877	19.289
Lo-Mendell-Rubin adjusted LRT p value	< 0.0001	<0.0001	0.0322
Bootstrap LRT p value	<0.01	<0.01	>0.50
Chi-square goodness-of-fit tests			
Degrees of freedom	43	36	29
LRT χ ²	123.588	58.725	39.138
p value	< 0.0001	0.0098	0.0990
Bootstrap p value†	<0.01	0.02	0.11
Pearson χ ²	132.431	49.416	35.966
p value	< 0.0001	0.0674	0.1746
Bootstrap p value†	<0.01	0.10	0.40
Information criterion‡			_
Akaike's Information Criterion	6,527.210	6,476.347	6,470.760
Bayesian Information Criterion	6,649.073	6.640.862	6,677.927
Sample-size-adjusted Bayesian Information Criterion	6,585.524	6,555.071	6,569.894
Entropy	0.856	0.913	0.897
Condition number§	0.120E-03	0.783E-03	0.379E ⁻⁰³

^{*} LLCA, longitudinal latent class analysis; LRT, likelihood ratio test.

Croudace et al (2003) Amer J Epidemiology

[†] Bootstrap p values were based on 200 resamples.

[‡] Minimum values are shown in italic type.

^{\$} Condition number = ratio of the largest eigenvalue to the smallest eigenvalue for the Fisher information matrix. Small values less than $10E^{-09}$ indicate problems with model identification.

Cross-validation estimates "out-of-sample" prediction error

FIGURE 5.3. A schematic display of LOOCV. A set of n data points is repeatedly split into a training set (shown in blue) containing all but one observation, and a validation set that contains only that observation (shown in beige). The test error is then estimated by averaging the n resulting MSE's. The first training set contains all but observation 1, the second training set contains all but observation 2, and so forth.

More on cross-validation in ISL Chapter 5.

Leave-one-out cross-validation, made simple

By fitting n models, leaving one observation out sequentially, we could calculate the out-of-sample prediction error as:

$$CV_{(n)} = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i^{(-i)})^2$$

This looks computationally intensive, but for linear regression models this is equivalent to

$$CV_{(n)} = \frac{1}{n} \sum_{i} \left(\frac{y_i - \hat{y}_i}{1 - h_{ii}} \right)^2$$

where the \hat{y} come from the linear model fitted to all the data. No resampling needed!

k-fold cross-validation

123		n
	1	
11 76 5		47
11 76 5		47
11 76 5		47
11 76 5		47
11 76 5		47

FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is randomly split into five non-overlapping groups. Each of these fifths acts as a validation set (shown in beige), and the remainder as a training set (shown in blue). The test error is estimated by averaging the five resulting MSE estimates.

Figure credits: ISL Chapter 5.

k-fold cross-validation

As an alternative, we can fit k models, by creating a random k-fold partition of your data, and calculate out-of-sample prediction error:

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

where MSE_i is the mean squared error of the observations in the i^{th} held out fold.

Can be more computationally feasible when n is large and you don't have the linear regression $h_i i$ computational shortcut.

Why LOOCV can still lead to overfitting

Note: sums of highly correlated variables have high variance.

Which has a higher variance, $CV_{(k)}$ or $CV_{(n)}$?

$$CV_{K-1/2} \leq MSE$$
: $CV_{M} = \frac{1}{2} \leq (g_1 - g_1)^2$

Common choices for k are 5 or 10.

Model building is an art

Putting this all together requires

- knowledge of the process generating the data
- detailed data exploration
- checking assumptions
- careful model building
- awareness of the potential for overfitting
- patience patience patience

Sequential variable selection methods

PROCEED WITH CAUTION: Stepwise selection methods are dangerous if you want accurate inferences

- General idea: add/remove variables sequentially.
- There are many potential models usually exhausting the model space is difficult or infeasible
- Stepwise methods don't consider all possibilities
- One paper* showed that stepwise analyses produced models that...
 - represented noise 20-75% of the time
 - contained <50% of actual predictors
 - lacktriangledown correlation btw predictors \longrightarrow including more predictors
 - number of predictors correlated with number of noise predictors included

^{*} Derksen and Keselman (1992) British J Math Stat Psych

MORE concerns with sequential methods

- It's common to treat the final model as if it were the only model ever considered – to base all interpretation on this model and to assume the inference is accurate
- This doesn't really reflect the true model building procedure, and can misrepresent what actually happened
- Inference is difficult in this case; it's hard to write down a statistical framework for the entire procedure
- Predictions can be made from the final model, but uncertainty around predictions will be understated
- P-values, Cls, etc will be incorrect

Variable selection in polynomial models
$$\left(n \left(y \sim \rho s | y \left(x, 2 \right) \right) \right)$$

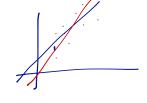
A quick note about polynomials. If you fit a model of the form

$$y_i = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon_i$$

and find the quadratic term is significant but the linear term is not...

- You should still keep the linear term in the model
- Otherwise, your model is sensitive to centering shifting x will change your model
- Using orthogonal polynomials helps with this

Variable selection: the intercept



A quick note about the intercept in MLR. If you fit a model of the form

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \epsilon_i$$

and find the intercept term is not significant ...

- in general, you should still keep the intercept in the model
- Otherwise, your model is very strongly restricted in the linear form it can take!

Sample size can limit the number of predictors

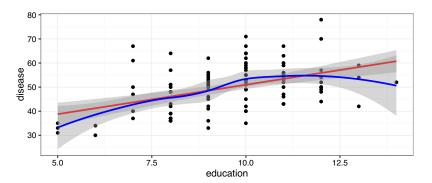
p (total number of β s) should be $<\frac{m}{15}$, where

Type of Response Variable	Limiting sample size <i>m</i>
Continuous	n (total sample size)
Binary	$min(n_1, n_2)$
Ordinal (k categories)	$n - \frac{1}{n^2} \sum_{i=1}^{k} n_i^3$
Failure (survival) time	number of failures

Table adapted from Harrel (2012) notes from "Regression Modeling Strategies" workshop.

Example: lung data

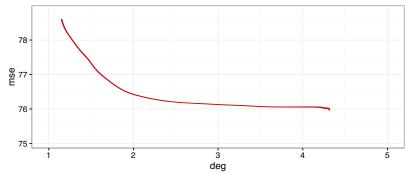
```
ggplot(dat, aes(education, disease)) + geom_point() +
    geom_smooth(method="lm", color="red") +
    geom_smooth(color="blue")
```



Example: lung data

Run a LOOCV to determine the optimal polynomial degree on education.

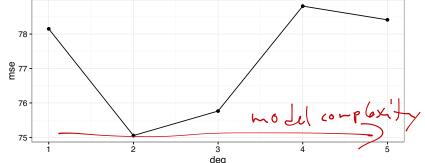
```
n <- 5 # ha x dg rec
mses <- data.frame(deg=1:n, mse=rep(NA, n))
for(i in 1:n) {
    fm <- lm(disease ~ poly(education, i), data=dat)
    mses[i, "mse"] <- sum( ( resid(fm)/(1-hatvalues(fm)) )^2 )/nrow(dat
}
ggplot(mses, aes(deg, mse)) + geom_blank()</pre>
```



Example: lung data

Run a LOOCV to determine the optimal polynomial degree on education.

```
n <- 5
mses <- data.frame(deg=1:n, mse=rep(NA, n))
for(i in 1:n) {
    fm <- lm(disease ~ poly(education, i), data=dat)
    mses[i, "mse"] <- sum( ( resid(fm)/(1-hatvalues(fm)) )^2 )/nrow(dat
}
ggplot(mses, aes(deg, mse)) + geom_line() + geom_point()</pre>
```



Example: lung data (on your own)

Use the cv.glm() function to calculate the k-fold cross-validated error. Are the results the same?

A more modern approach to variable selection

Penalized regression (a.k.a. "shrinkage", "regularization")

- adds an explicit penalty to the least squares criterion
- keeps regression coefficients from being too large, or can shrink coefficients to zero
- Keywords for methods: LASSO, Ridge Regression
- More in Biostat Methods 3 (fall semester)!

Whole branches of modern statistics are devoted to figuring out what to do when $p \ge n$.

Today's big ideas

Model selection key points:

- There is no one-size-fits-all formula for model selection.
- Consult a variety of metrics, weight more heavily ones that may be more suited to your application (e.g. cross-validated metrics for prediction,...)
- Beware of black-box selection methods.
- Cross-validation can be an important tool.
- Consider penalized regression methods.