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Today’s Lecture

� Sampling distribution of β̂

� Confidence intervals

� Hypothesis tests for individual coefficients

� Multiple testing
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Statistical inference

� We have LSEs β̂0, β̂1, . . .; we want to know what this tells us
about β0, β1, . . ..

� Two basic tools are confidence intervals and hypothesis tests
I Confidence intervals provide a plausible range of values for the

parameter of interest based on the observed data
I Hypothesis tests ask how probable are the data we gathered

under a null hypothesis about the data generating distribution



Motivation

How can we draw inference about each of these parameters and
relationships that our model is encoding?

mlr1 <- lm(disease ~ airqual + crowding + nutrition + smoking,

data=dat)

summary(mlr1)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.86333314 2.578819159 4.600297 1.315919e-05

## airqual 0.25788257 0.026799356 9.622715 1.165263e-15

## crowding 1.11112603 0.102036855 10.889458 2.403742e-18

## nutrition -0.03278397 0.007953614 -4.121896 8.094957e-05

## smoking 4.96093131 1.085292354 4.571055 1.475259e-05



Motivation

� Can we say anything about whether the effect of airquality
is “significant” after adjusting for other variables?

� Can we say whether adding airquality improves the fit of
our model?

� Can we compare this model to a model with crowding,
nutrition and smoking?



Sampling distribution

If our usual assumptions are satisfied and ε
iid∼ N

[
0, σ2

]
then

β̂ ∼ N
[
β, σ2(XTX)−1

]
.

β̂j ∼ N
[
β, σ2(XTX)−1

jj

]
.

� This will be used later for inference.

� Even without Normal errors, asymptotic Normality of LSEs is
possible under reasonable assumptions.



Sampling distribution

For real data we have to estimate σ2 as well as β.

� Recall our estimate of the error variance is

σ̂2 =
RSS

n − p − 1
=

∑
i (yi − ŷi )

2

n − p − 1

� With Normally distributed errors, it can be shown that

(n − p − 1)
σ̂2

σ2
∼ χ2

n−p−1



Testing procedure

Calculate the probability of the observed data (or more extreme
data) under a null hypothesis.

� Often H0 : βj = 0 and Ha : βj 6= 0

� Set type I error rate
α = P(falsely rejecting a true null hypothesis)

� Calculate a test statistic assuming the null hypothesis is true

� Compute a p-value =

P(β̂j as or more extreme as observed|H0)

� Reject or fail to reject H0



Individual coefficients

For individual coefficients

� We can use the test statistic

T =
β̂j − βj
ŝe(β̂j)

=
β̂j − βj√
σ̂2(XTX)−1

jj

∼ tn−p−1

� For a two-sided test of size α, we reject if

|T | > t1−α/2,n−p−1

� The p-value gives P(tn−p−1 > Tobs |H0)

Note that t is a symmetric distribution that converges to a Normal
as n − p − 1 increses.



Back to the example
summary(mlr1)

##

## Call:

## lm(formula = disease ~ airqual + crowding + nutrition + smoking,

## data = dat)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.1297 -2.1834 -0.5716 1.9412 13.3260

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.863333 2.578819 4.600 1.32e-05 ***

## airqual 0.257883 0.026799 9.623 1.17e-15 ***

## crowding 1.111126 0.102037 10.889 < 2e-16 ***

## nutrition -0.032784 0.007954 -4.122 8.09e-05 ***

## smoking 4.960931 1.085292 4.571 1.48e-05 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.644 on 94 degrees of freedom

## Multiple R-squared: 0.8664, Adjusted R-squared: 0.8607

## F-statistic: 152.4 on 4 and 94 DF, p-value: < 2.2e-16



Individual coefficients: CIs

Alternatively, we can construct a confidence interval for βj

� A confidence interval with coverage (1− α) is given by

β̂j ± t1−α/2,n−p−1ŝe(β̂j)

� Assuming all the standard assumptions hold,

(1− α) = P(LB < βj < UB)



Detour: confidence interval interpretations

The semantics of confidence intervals are tricky!

The technically correct interpretation of a (frequentist) confidence
interval is:
if the current experiment were repeated under similar conditions,
we expect that 1− α% of the time the confidence interval for a
parameter would cover the true value of the parameter.



Detour: confidence interval interpretations

Possible interpretations

� “There is a 95% probability that this confidence interval
contains the true value of the parameter.”
WRONG!

� “We are 95% confident that this interval contains the truth.”
NOT VERY TECHNICALLY SPECIFIC, BUT NOT
INCORRECT EITHER.

� “The 95% confidence interval for this parameter is (a, b).”
COMMONLY USED, ASSUMES THE READER KNOWS
HOW TO INTERPRET.

� “With confidence coefficient .95, we estimate that the average
change in Y per 1 unit increase of X lies somewhere between
(a and b).”
TECHNICALLY CORRECT, BUT NOT CLEAR WHAT
CONF COEF IS.



Back to the example

cbind(coef(mlr1), confint(mlr1))

## 2.5 % 97.5 %

## (Intercept) 11.86333314 6.74302724 16.98363903

## airqual 0.25788257 0.20467182 0.31109332

## crowding 1.11112603 0.90852947 1.31372260

## nutrition -0.03278397 -0.04857606 -0.01699189

## smoking 4.96093131 2.80605790 7.11580472



Confidence regions for multiple parameters

If you want to draw inference about multiple parameters, it is
better to look at them simultaneously.



Plotting 2D confidence regions

library(ellipse)

plot(ellipse(mlr1,c(2,3)),type="l")

points(coef(mlr1)[2],coef(mlr1)[3], pch=18)

abline(v=c(confint(mlr1)[2,1], confint(mlr1)[2,2]), lty=2)

abline(h=c(confint(mlr1)[3,1], confint(mlr1)[3,2]), lty=2)
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Progress report

� Sampling distribution of β̂

� Confidence intervals

� Hypothesis tests for individual coefficients

� Multiple testing



Multiple testing - preserving your Type I error rate



Multiple testing - preserving your Type I error rate



Inference about multiple coefficients

Our model contains multiple parameters; often we want ask a
question about multiple coefficients simultaneously. I.e. “are any
of these k coefficients significantly different from 0?” This is
equivalent to performing multiple tests (or looking at confidence
ellipses):

H01 : β1 = 0

H02 : β2 = 0
... =

...

H0k : βk = 0

where each test has a size of α

� For any individual test, P(reject H0i |H0i ) = α



Inference about multiple coefficients

For any individual test, P(reject H0i |H0i ) = α.

But it DOES NOT FOLLOW that

P(reject at least one H0i |all H0iare true) = α.

This is called the Family-wise error rate (FWER). Ignore it at your
own peril!



Family-wise error rate

To calculate the FWER

� First note P(no rejections|all H0iare true) = (1− α)k

� It follows that

FWER = P(at least one rejection|all H0iare true)

= 1− (1− α)k



Family-wise error rate

FWER = 1− (1− α)k

alpha <- .05

k <- 1:100

FWER <- 1-(1-alpha)^k

qplot(k, FWER, geom="line") + geom_hline(yintercept = 1, lty=2)
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Addressing multiple comparisons

Three general approaches

� Do nothing in a reasonable way
I Don’t trust scientifically implausible results
I Don’t over-emphasize isolated findings

� Correct for multiple comparisons
I Often, use the Bonferroni correction and use αi = α/k for

each test
I Thanks to the Bonferroni inequality, this gives an overall

FWER ≤ α
� Use a global test



Global tests

Compare a smaller “null” model to a larger “alternative” model

� Smaller model must be nested in the larger model

� That is, the smaller model must be a special case of the larger
model

� For both models, the RSS gives a general idea about how well
the model is fitting

� In particular, something like

RSSS − RSSL

RSSL

compares the relative RSS of the models



Nested models

� These models are nested:

Smaller = Regression of Y on X1

Larger = Regression of Y on X1,X2,X3,X4

� These models are not:

Smaller = Regression of Y on X2

Larger = Regression of Y on X1,X3



Global F tests

� Compute the test statistic

Fobs =
(RSSS − RSSL)/(dfS − dfL)

RSSL/dfL

� If H0 (the null model) is true, then Fobs ∼ FdfS−dfL,dfL

� Note dfs = n − pS − 1 and dfL = n − pL − 1

� We reject the null hypothesis if the p-value is above α, where

p-value = P(FdfS−dfL,dfL > Fobs)



Global F tests

There are a couple of important special cases for the F test

� The null model contains the intercept only
I When people say ANOVA, this is often what they mean

(although all F tests are based on an analysis of variance)

� The null model and the alternative model differ only by one
term
I Gives a way of testing for a single coefficient
I Turns out to be equivalent to a two-sided t-test: t2

dfL
∼ F1,dfL



Lung data: multiple coefficients simultaneously

You can test multiple coefficients simultaneously using the F test

mlr_null <- lm(disease ~ nutrition, data=dat)

mlr1 <- lm(disease ~ nutrition+ airqual + crowding + smoking, data=dat)

anova(mlr_null, mlr1)

## Analysis of Variance Table

##

## Model 1: disease ~ nutrition

## Model 2: disease ~ nutrition + airqual + crowding + smoking

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 97 9192.7

## 2 94 1248.0 3 7944.7 199.47 < 2.2e-16 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This test shows that airqual, crowding, and smoking together significantly improve the
fit of our model (assuming model diagnostics look good). Further analyses may be
warranted to determine which, if any, coefficients are not different from 0.



Lung data: single coefficient test
The F test is equivalent to the t test when there’s only one
parameter of interest

mlr_null <- lm(disease ~ nutrition, data=dat)

mlr1 <- lm(disease ~ nutrition + airqual, data=dat)

anova(mlr_null, mlr1)

## Analysis of Variance Table

##

## Model 1: disease ~ nutrition

## Model 2: disease ~ nutrition + airqual

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 97 9192.7

## 2 96 5969.5 1 3223.1 51.833 1.347e-10 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(mlr1)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 37.62538251 2.43946243 15.423637 9.946294e-28

## nutrition -0.03469855 0.01692446 -2.050202 4.307101e-02

## airqual 0.36114435 0.05016218 7.199535 1.346935e-10



Today’s Big Ideas

Basic parameter inference for multiple linear regression models

� How to determine “significance” of your covariates

� F tests can control for multiple comparisons!

Multiple testing activity!

http://nickreich.github.io/applied-regression-2016/assets/labs/lab3a-global-tests/global-tests.html

