Multiple Linear Regression: Model Checking and Diagnostics

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's Lecture

- Model checking and diagnostics
- Variable transformations

Model selection vs. model checking

Assume $y|\mathbf{x} = f(\mathbf{x}) + \epsilon$

- model checking asks whether the
 e match the assumed form, whether there are systematic and diagnosable (and fixable!) deviations from assumed model structure.
- model selection (coming soon!) focuses on how you construct f(·);

Model checking: possible challenges

Two major areas of concern

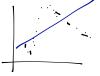
- Global lack of fit, or general breakdown of model assumptions
 - Linearity
 - Unbiased, uncorrelated errors $E(\epsilon|x) = E(\epsilon) = 0$
 - Constant variance $Var(y|x) = Var(\epsilon|x) = \sigma^2$
 - Independent errors
 - Normality of errors
- Effect of influential points and outliers

Model checking: possible solutions and strategies

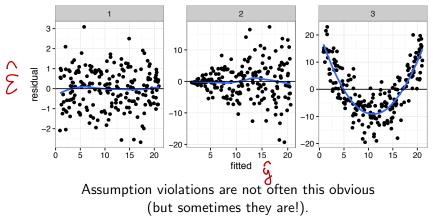
Global lack of fit, or general breakdown of model assumptions

- Residual analysis QQ plots, residual plots against fitted values and predictors
- Adjusted variable plots
- Effect of influential points and outliers
 - Measure of leverage, influence, outlying-ness

Residual plots: verifying assumptions



Which assumptions (if any) do these plots show violations of?



QQ-plots for checking Normality of residuals

QQ plot defined

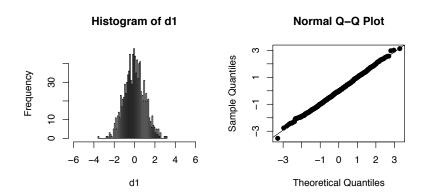
QQ-plot stands for guantile-guantile plot, and is used to compare two distributions. If the two distributions are the same, then each point (which represents a quantile from each distribution) should lie along a line.

For a single (x, y) point

- x = a specific quantile for the N(0,1) distribution
- y = the same quantile from the sample of data = 7 (csiduals

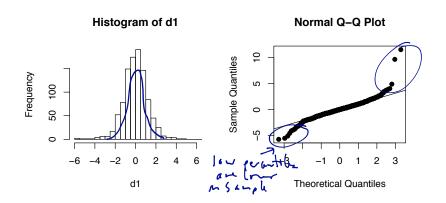
example: Gaussian or Normal(0,1) distribution

```
d1 <- rnorm(1000)
layout(matrix(1:2, nrow=1))
hist(d1, breaks=50, xlim=c(-6, 6))
qqnorm(d1, pch = 19)
qqline(d1)</pre>
```



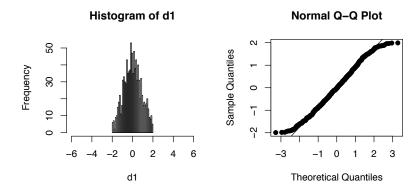
example: Student's T-distribution with 6 d.f.

```
d1 <- rt(1000, df=5)
layout(matrix(1:2, nrow=1))
hist(d1, breaks=50, xlim=c(-6, 6))
qqnorm(d1, pch = 19)
qqline(d1)</pre>
```

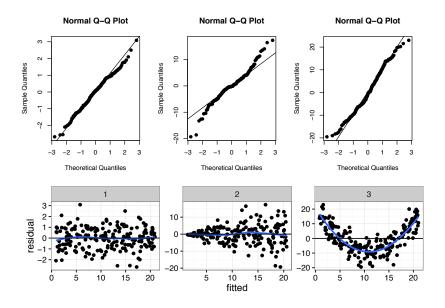


example: Truncated Gaussian

```
d1 <- rnorm(1000)
d1 <- subset(d1, abs(d1)<2)
layout(matrix(1:2, nrow=1))
hist(d1, breaks=50, xlim=c(-6, 6))
qqnorm(d1, pch = 19)
qqline(d1)</pre>
```



QQ-plots for our three fits from earlier



Recall: Lung Data Example

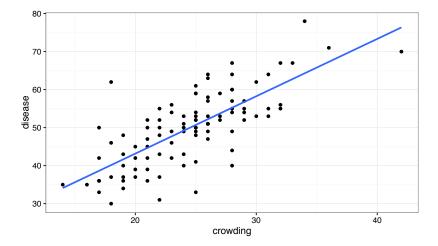
99 observations on patients who have sought treatment for the relief of respiratory disease symptoms.

The variables are:

- disease measure of disease severity (larger values indicates more serious condition).
- education highest grade completed
- crowding measure of crowding of living quarters (larger values indicate more crowding)
- airqual measure of air quality at place of residence (larger number indicates poorer quality)
- nutrition nutritional status (larger number indicates better nutrition)
- smoking smoking status (1 if smoker, 0 if non-smoker)

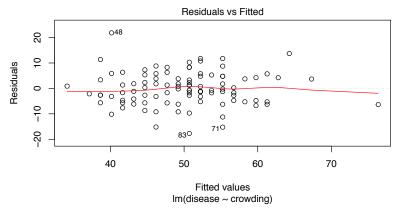
Typical regression plot: fitted line

```
ggplot(data, aes(crowding, disease)) +
    geom_point() + geom_smooth(method="lm", se=FALSE)
```



Typical residual plot: fitted vs. residuals

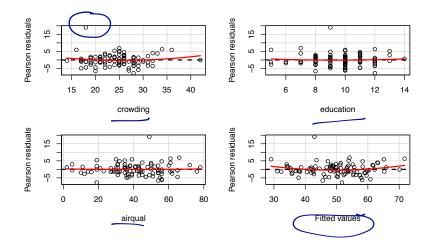
slr1 <- lm(disease ~ crowding, data=data)
plot(slr1, which=1)</pre>



But this is more complicated with MLR: how do we visualize adjusted multivariable relationships?

Predictor vs. residual plots

library(car) mlr1 <- lm(disease ~ crowding + education + airqual, data=data) residualPlots(mlr1, tests=FALSE)</pre>



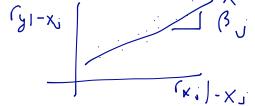
Checking model structure: adjusted variable plots!

- You can plot residuals against each of the predictors, or plot outcomes against predictors, BUT...
- Keep in mind the MLR uses adjusted relationships; scatterplots don't show that adjustment!

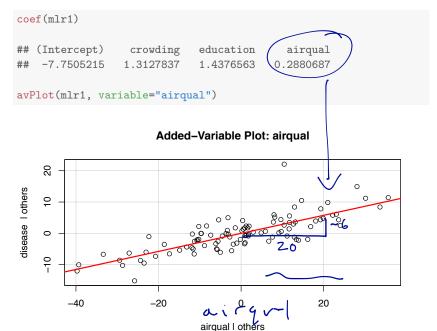
Adjusted variable plots (partial regression plots, added variable plots) can be useful.

Adjusted (or added) variable plots

- Regress y on everything but x_j ; take residuals $r_{y|-x_i}$
- Regress x_j on everything but x_j ; take residuals $r_{x_i|-x_i}$
- Regress $r_{y|-x_j}$ on $r_{x_j|-x_j}$; slope of this line will match β_j in the full MLR
- Plot of $r_{y|-x_j}$ against $r_{x_j|-x_j}$ shows the "adjusted" relationship
- This figure can be used to diagnose violations of linearity in MLR models.



AV plots

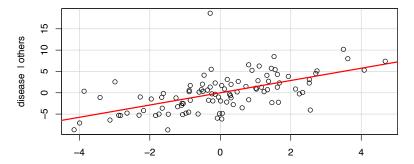


AV plots

coef(mlr1)

(Intercept) crowding education airqual
-7.7505215 1.3127837 1.4376563 0.2880687

avPlot(mlr1, variable="education")



Added–Variable Plot: education

education I others

Model checking: possible solutions

- Global lack of fit, or general breakdown of model assumptions
 Residual analysis QQ plots, residual plots against fitted values and predictors
 Adjusted variable plots
- Effect of influential points and outliers
 - Measure of leverage, influence, outlying-ness

Points can be isolated in three ways

- Leverage point outlier in x, measured by hat matrix
- Outlier outlier in y, measured by residual
- Influential point a point that largely affects β
 - Deletion influence; $|\hat{m{eta}} \hat{m{eta}}_{(-i)}|$
 - Basically, a high-leverage outlier

Quantifying leverage

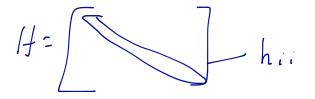
$$\frac{(\times,-\overline{\times})^{2}}{\mathcal{E}(\kappa,-\overline{\times})^{2}}$$

We measure leverage (the "distance" of \mathbf{x}_i from the distribution of \mathbf{x}) using

$$h_{ii} = \mathbf{x}_i^{\mathcal{T}} (\mathbf{X}^{\mathcal{T}} \mathbf{X})^{-1} \mathbf{x}_i$$

where h_{ii} is the $(i, i)^{th}$ entry of the hat matrix. Where, recall

$$\mathbf{H} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$



Quantifying Leverage via the Hat Matrix

Note that

$$\sum_{i} h_{ii} \stackrel{def}{=} tr(\mathbf{H}) = p$$

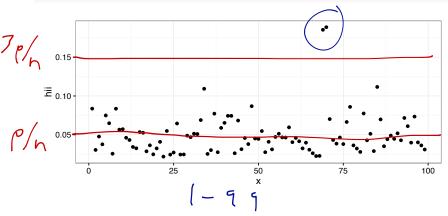
where p is the total number of independent predictors (i.e. β s) in your model (including a β_0 if you have one).

What counts as "big" leverage?

- Average leverage is p/n
- Typical rules of thumb are 2p/n or 3p/n
- Leverage plots can be useful as well

Example Leverage plot with lung data

r=5 n=99



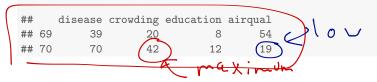
Example Leverage plot with lung data

Can be useful to investigate specific points.

cols <- c("disease", "crowding", "education", "airqual")
summary(data[,cols])</pre>

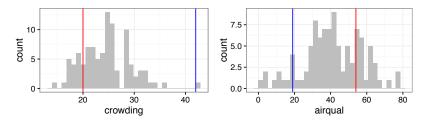
##	disease	crowding	education	airqual
##	Min. :30.00	Min. :14.00	Min. : 5.000	Min. : 2.00
##	1st Qu.:42.50	1st Qu.:21.00	1st Qu.: 8.000	1st Qu.:31.00
##	Median :51.00	Median :25.00	Median :10.000	Median :41.00
##	Mean :49.92	Mean :24.47	Mean : 9.566	Mean :40.92
##	3rd Qu.:55.00	3rd Qu.:28.00	3rd Qu.:11.000	3rd Qu.:54.00
##	Max. :78.00	Max. :42.00	Max. :14.000	Max. :78.00

(d <- data[which(hii>.15), cols])

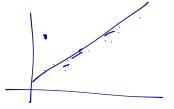


Example Leverage plot with lung data

Can be useful to investigate specific points.



Outliers



- When we refer to "outliers" we typically mean "points that don't have the same mean structure as the rest of the data"
- Residuals give an idea of "outlying-ness", but we need to standardize somehow
- We can use the fact that $Var(\hat{\epsilon}_i) = \sigma^2(1 h_{ii}) \dots$

Outliers

The standardized residual is given by

$$\hat{\epsilon}^*_i = rac{\hat{\epsilon}_i}{\sqrt{Var(\hat{\epsilon}_i)}} = rac{\hat{\epsilon}_i}{\hat{\sigma}\sqrt{(1-h_{ii})}}$$

The Studentized residual is given by

$$t_{i} = \frac{\hat{\epsilon}_{(-i)}}{\hat{\sigma}_{(-i)}\sqrt{(1-h_{ii})}} = \hat{\epsilon}_{i}^{*} \left(\frac{n-p}{n-p-\hat{\epsilon}_{i}^{*2}}\right)^{1/2}$$

Studentized residuals follow a t_{n-p-1} distribution.

Influence

Intuitively, "influence" is a combination of outlying-ness and leverage. More specifically, we can measure the "deletion influence" of each observation: quantify how much $\hat{\beta}$ changes if an observation is left out.

 $|\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{(-i)}|$

Cook's distance is

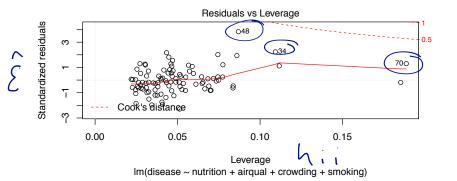
Suppose you fit a linear model in R;

- hatvalues gives the diagonal elements of the hat matrix h_{ii} (leverages)
- rstandard gives the standardized residuals
- rstudent gives the studentized residuals
- cooks.distance gives the Cook's distances

Built-in R plots for 1m objects

You can also use the plot.lm() function to look at leverage, outlying-ness, and influence all together. Recall that

$$D_i = \frac{1}{p} \hat{\epsilon^*}_i^2 \frac{h_{ii}}{1 - h_{ii}}$$

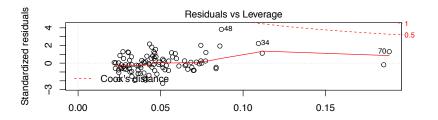


Model checking summary

You are looking for ...

- \blacksquare Points that show worrisome level of influence \implies sensitivity analysis!
- Systematic departures from model assumptions ⇒ transformations, different model structure
- Unrealistic outliers ⇒ check your data!

No points show worrisome influence in this lung data analysis, although observation 70 showed up in both of our analyses.



Back to the outline

- Model checking and diagnostics
- Variable transformations

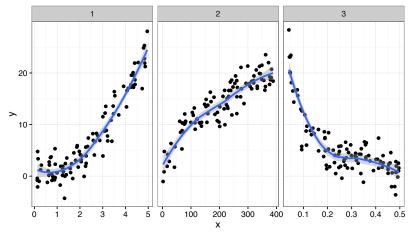
Overview of variable transformations

The problems

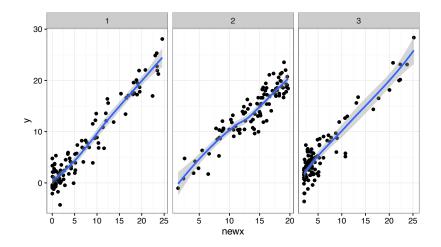
- Non-linearity between X and $Y \longrightarrow$ transform X
- Skewed distribution of Xs/points with high leverage \longrightarrow transform X
- Non-constant variance \longrightarrow transform Y

Transforming your X variables

Transforming predictor variables can help with constant-variance non-linear relationships.



Transforming your *X* variables



β interpretations with transformed Xs

Transforming predictor variables can help with non-linearities, but can make coefficient interpretations hard.

Possible solutions

- Interpret βs qualitatively across a region of interest: "We found strong evidence for an inverse association, where values of Y were inversely proportional to X across the observed range (a, b).
- Occasionally, a "one unit change in X" can be meaningful:
 e.g. log_a X. A one unit change in log_a X indicates a *a*-fold increase in X.

β interpretations with transformed Xs

- Transforming predictor variables can help with non-linearities, but can make coefficient interpretations hard.
- Can also use polynomials, splines (more soon!).

Transforming Ys for non-constant variance

What to do ...

- Nothing; just use least squares and bootstrap
- Use weighted LS, GLS (Biostat Methods 3?)
- Use a variance stabilizing transformation
- Consider a generalized linear model (more soon)

Outcome is raised to the λ power:

$$y_i^{\lambda} = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

- Estimate λ , a new parameter, by maximum likelihood.
- Some well-known choices of λ : 2, -1, 1/2
- By definition, when $\lambda = 0$, we specify $y_i^{\lambda} = \log_e y_i$

Today's big ideas

- Model checking
- Variable transformations
- Next up: inference about MLR parameters