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Today's Lecture

m Model checking and diagnostics

m Variable transformations



Model selection vs. model checking

Assume y|x = f(x) + ¢

m model checking asks whether the ¢ match the assumed form,
whether there are systematic and diagnosable (and fixable!)
deviations from assumed model structure.

m model selection (coming soon!) focuses on how you construct

()



Model checking: possible challenges

Two major areas of concern

m Global lack of fit, or general breakdown of model assumptions
> Linearity

Unbiased, uncorrelated errors E(e|x) = E(e) =0

Constant variance Var(y|x) = Var(e|x) = o2

Independent errors

Normality of errors

vV vy vy

m Effect of influential points and outliers



Model checking: possible solutions and strategies

m Global lack of fit, or general breakdown of model assumptions
» Residual analysis — QQ plots, residual plots against fitted
values and predictors
» Adjusted variable plots
m Effect of influential points and outliers
» Measure of leverage, influence, outlying-ness



Residual plots: verifying assumptions

NP

residual

fitted

Assumption violations are not often this obvious
(but sometimes they are!).



QQ-plots for checking Normality of residuals

QQ plot defined

QQ-plot stands for quantile-quantile plot, and is used to compare
two distributions. If the two distributions are the same, then each
point (which represents a quantile from each distribution) should
lie along a line.

For a single (x,y) point

= x = a specific quantile for the N(0,1) distribution s a—~ple
= y = the same quantile from the sample of data =) (¢S Ut»b



example: Gaussian or Normal(0,1) distribution

dl <- rnorm(1000)

layout (matrix(1:2, nrow=1))
hist(dl, breaks=50, xlim=c(-6, 6))
qgnorm(dl, pch = 19)

qqline(d1)
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example: Student's T-distribution with 6 d.f.

dl <- rt(1000, df=5)

layout (matrix(1:2, nrow=1))
hist(dl, breaks=50, xlim=c(-6, 6))
qgnorm(dl, pch = 19)

qqline(d1)
Histogram of d1 Normal Q-Q Plot
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example: Truncated Gaussian

d1l <- rnorm(1000)

dl <- subset(dl, abs(dl)<2)
layout (matrix(1:2, nrow=1))
hist(dl, breaks=50, xlim=c(-6, 6))
qgnorm(dl, pch = 19)

qqline(dl)
Histogram of d1 Normal Q-Q Plot
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QQ-plots for our three fits from earlier

Sample Quantiles

residual
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Recall:

Lung Data Example

99 observations on patients who have sought treatment for the
relief of respiratory disease symptoms.
The variables are:

disease measure of disease severity (larger values indicates
more serious condition).

education highest grade completed

crowding measure of crowding of living quarters (larger
values indicate more crowding)

airqual measure of air quality at place of residence (larger
number indicates poorer quality)

nutrition nutritional status (larger number indicates better
nutrition)

smoking smoking status (1 if smoker, 0 if non-smoker)



Typical regression plot: fitted line

ggplot(data, aes(crowding, disease)) +
geom_point() + geom_smooth(method="1m", se=FALSE)
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Typical residual plot: fitted vs. residuals

slrl <- 1m(disease ~ crowding, data=data)
plot(slrl, which=1)

Residuals vs Fitted
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But this is more complicated with MLR: how do we visualize adjusted multivariable
relationships?



Predictor vs. residual plots

mlrl <- Im(disease ~ crowding + education + airqual, data=data)
residualPlots(mlrl, tests=FALSE)
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Checking model structure: adjusted variable plots!

m You can plot residuals against each of the predictors, or plot
outcomes against predictors, BUT...

m Keep in mind the MLR uses adjusted relationships;
scatterplots don't show that adjustment!

Adjusted variable plots (partial regression plots, added variable
plots) can be useful.



Adjusted (or added) variable plots

Regress y on everything but x;; take residuals ry|_,

Regress x; on everything but Xx;; take residuals r, |,

Regress ry|_,, on r|_; slope of this line will match 3; in the
full MLR

Plot of ry|-x against r_,. shows the “adjusted” relationship

This figure can be used to diagnose violations of linearity in
MLR models.




AV plots

coef (mlrl)

airqual
0.2880687

## (Intercept) crowding  education
## -7.7505215 1.3127837 1.4376563

avPlot (mlrl, variable="airqual")

Added-Variable Plot: airqual
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AV plots

coef (mlrl)

## (Intercept) crowding  education airqual
## -7.75056215 1.3127837 1.4376563 0.2880687

avPlot(mlrl, variable="education")

Added-Variable Plot: education
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Model checking: possible solutions

m Global Igek of fit, or general breakdown of model assumptions

»Residual analysis — QQ plots, residual plots against fitted
values and predictors

[yAﬁjusted variable plots
m Effect of influential points and outliers
» Measure of leverage, influence, outlying-ness



Isolated points

Points can be isolated in three ways

m Leverage point — outlier in x, measured by hat matrix
m Qutlier — outlier in y, measured by residual
m Influential point — a point that largely affects 3

> Deletion influence; |3 — ,@(_,-)|
» Basically, a high-leverage outlier



Quantifying leverage [)( , SZ) -

e SR

We measure leverage (the “distance” of x; from the distribution of
x) using
h; = X,T(XTX)ilx,'

where h;; is the (i, )" entry of the hat matrix. Where, recall

H=X(X"X)"1xT

U'—[N/ o



Quantifying Leverage via the Hat Matrix

Note that

Zh,',' déf tr(H) =p

where p is the total number of independent predictors (i.e. 3s) in
your model (including a f3p if you have one).

What counts as “big” leverage?
m Average leverage is p/n

m Typical rules of thumb are 2p/n or 3p/n

m Leverage plots can be useful as well



Example Leverage plot with lung data
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mlr <- Im(disease ~ nutrition+ airqual + crowding + smoking,
data=data)
hii <- hatvalues(mlr)
x <- 1:length(hii)

gplot(x, hii, geom=
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Example Leverage plot with lung data

Can be useful to investigate specific points.

cols <- c("disease", "crowding", "education", "airqual")
summary (datal,cols])

##
##
##
##
##
##
##

Min.
1st Qu.:42.
Median
Mean

3rd Qu.:55.
Max.

disease

:30.

8Bl o
:49.

:78.

00
50
00
92
00
00

crowding

Min.
1st Qu.:21
Median
Mean

Max.

:14.

2561
:24.
3rd Qu.:28.
142,

00
.00
00
47
00
00

(d <- data[which(hii>.15), cols])

##
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Example Leverage plot with lung data

Can be useful to investigate specific points.

library(gridExtra)

pl <- ggplot(data) + geom_histogram(aes(x=crowding), fill="grey") +
geom_vline(xintercept=d[1,"crowding"], color="red") +
geom_vline(xintercept=d[2,"crowding"], color="blue")

p2 <- ggplot(data) + geom_histogram(aes(x=airqual), fill="grey") +
geom_vline(xintercept=d[1,"airqual"], color="red") +
geom_vline(xintercept=d[2,"airqual"], color="blue")

grid.arrange(pl, p2, ncol=2)
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Outliers

m When we refer to “outliers” we typically mean “points that
don’t have the same mean structure as the rest of the data”

m Residuals give an idea of “outlying-ness”, but we need to
standardize somehow

= We can use the fact that Var(¢;) = o?(1 — h;) ...



Outliers

The standardized residual is given by

A~ A
A~k

T Var(@) o/ )

The Studentized residual is given by

& . 1/2
b — (1) o ("—P)
/A —hi) T \n—p—&?

Studentized residuals follow a t,_,_1 distribution.



Influence

Intuitively, “influence” is a combination of outlying-ness and
leverage. More specifically, we can measure the “deletion
influence” of each observation: quantify how much 3 changes if an
observation is left out.

w B - B il

m Cook’s distance is

D =




Handy R functions

Suppose you fit a linear model in R;

m hatvalues gives the diagonal elements of the hat matrix hj;
(leverages)

m rstandard gives the standardized residuals
m rstudent gives the studentized residuals

m cooks.distance gives the Cook’s distances



Built-in R plots for 1m objects

You can also use the plot.1m() function to look at leverage,
outlying-ness, and influence all together. Recall that

)

Standardized residuals

plot(mlr, which=5)

Residuals vs Leverage
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Model checking summary

You are looking for...

m Points that show worrisome level of influence = sensitivity
analysis!

m Systematic departures from model assumptions —
transformations, different model structure

m Unrealistic outliers = check your data!

No points show worrisome influence in this lung data analysis,
although observation 70 showed up in both of our analyses.

Residuals vs Leverage
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Back to the outline

m Model checking and diagnostics

m Variable transformations



Overview of variable transformations

The problems

m Non-linearity between X and Y — transform X

m Skewed distribution of Xs/points with high leverage —
transform X
m Non-constant variance — transform Y



Transforming your X variables

Transforming predictor variables can help with constant-variance
non-linear relationships.
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Transforming your X variables
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[ interpretations with transformed Xs

Transforming predictor variables can help with non-linearities, but
can make coefficient interpretations hard.

Possible solutions

m Interpret s qualitatively across a region of interest: “We
found strong evidence for an inverse association, where values
of Y were inversely proportional to X across the observed
range (a, b).

m Occasionally, a “one unit change in X" can be meaningful:
e.g. log, X. A one unit change in log, X indicates a a-fold
increase in X.

Loy =7 "dasbly



[ interpretations with transformed Xs

m Transforming predictor variables can help with non-linearities,
but can make coefficient interpretations hard.

= Can also use polynomials, splines (more soon!).



Transforming Y's for non-constant variance

What to do ...
m Nothing; just use least squares and bootstrap
m Use weighted LS, GLS (Biostat Methods 37)
m Use a variance stabilizing transformation

m Consider a generalized linear model (more soon)



Box-Cox Transformations

Outcome is raised to the \ power:

v = Bo + Bixi1 + Baxia + €

m Estimate ), a new parameter, by maximum likelihood.
m Some well-known choices of A: 2, -1, 1/2

m By definition, when A = 0, we specify y,-)‘ = log. yi



Today's big ideas

m Model checking
m Variable transformations

m Next up: inference about MLR parameters



