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Today’s Lecture

⌅ Model checking and diagnostics

⌅ Variable transformations



Model selection vs. model checking

Assume y |x = f (x) + ✏

⌅ model checking asks whether the ✏ match the assumed form,
whether there are systematic and diagnosable (and fixable!)
deviations from assumed model structure.

⌅ model selection (coming soon!) focuses on how you construct
f (·);



Model checking: possible challenges

Two major areas of concern

⌅ Global lack of fit, or general breakdown of model assumptions
I Linearity
I Unbiased, uncorrelated errors E (✏|x) = E (✏) = 0
I Constant variance Var(y |x) = Var(✏|x) = �2

I Independent errors
I Normality of errors

⌅ E↵ect of influential points and outliers



Model checking: possible solutions and strategies

⌅ Global lack of fit, or general breakdown of model assumptions
I Residual analysis – QQ plots, residual plots against fitted

values and predictors
I Adjusted variable plots

⌅ E↵ect of influential points and outliers
I Measure of leverage, influence, outlying-ness



Residual plots: verifying assumptions

Which assumptions (if any) do these plots show violations of?
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Assumption violations are not often this obvious
(but sometimes they are!).



QQ-plots for checking Normality of residuals

QQ plot defined
QQ-plot stands for quantile-quantile plot, and is used to compare
two distributions. If the two distributions are the same, then each
point (which represents a quantile from each distribution) should
lie along a line.

For a single (x , y) point

⌅ x = a specific quantile for the N(0,1) distribution

⌅ y = the same quantile from the sample of data



example: Gaussian or Normal(0,1) distribution

d1 <- rnorm(1000)

layout(matrix(1:2, nrow=1))

hist(d1, breaks=50, xlim=c(-6, 6))

qqnorm(d1, pch = 19)

qqline(d1)
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example: Student’s T-distribution with 6 d.f.

d1 <- rt(1000, df=5)

layout(matrix(1:2, nrow=1))

hist(d1, breaks=50, xlim=c(-6, 6))

qqnorm(d1, pch = 19)

qqline(d1)

Histogram of d1
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example: Truncated Gaussian

d1 <- rnorm(1000)

d1 <- subset(d1, abs(d1)<2)

layout(matrix(1:2, nrow=1))

hist(d1, breaks=50, xlim=c(-6, 6))

qqnorm(d1, pch = 19)

qqline(d1)
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QQ-plots for our three fits from earlier
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Recall: Lung Data Example

99 observations on patients who have sought treatment for the
relief of respiratory disease symptoms.
The variables are:

⌅ disease measure of disease severity (larger values indicates
more serious condition).

⌅ education highest grade completed

⌅ crowding measure of crowding of living quarters (larger
values indicate more crowding)

⌅ airqual measure of air quality at place of residence (larger
number indicates poorer quality)

⌅ nutrition nutritional status (larger number indicates better
nutrition)

⌅ smoking smoking status (1 if smoker, 0 if non-smoker)



Typical regression plot: fitted line

ggplot(data, aes(crowding, disease)) +

geom_point() + geom_smooth(method="lm", se=FALSE)
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Typical residual plot: fitted vs. residuals

slr1 <- lm(disease ~ crowding, data=data)

plot(slr1, which=1)
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But this is more complicated with MLR: how do we visualize adjusted multivariable

relationships?



Predictor vs. residual plots

library(car)

mlr1 <- lm(disease ~ crowding + education + airqual, data=data)

residualPlots(mlr1, tests=FALSE)

15 20 25 30 35 40

−5
5

15

crowding

Pe
ar

so
n 

re
si

du
al

s

6 8 10 12 14

−5
5

15

education

Pe
ar

so
n 

re
si

du
al

s

0 20 40 60 80

−5
5

15

airqual

Pe
ar

so
n 

re
si

du
al

s

30 40 50 60 70

−5
5

15

Fitted values

Pe
ar

so
n 

re
si

du
al

s



Checking model structure: adjusted variable plots!

⌅ You can plot residuals against each of the predictors, or plot
outcomes against predictors, BUT...

⌅ Keep in mind the MLR uses adjusted relationships;
scatterplots don’t show that adjustment!

Adjusted variable plots (partial regression plots, added variable
plots) can be useful.



Adjusted (or added) variable plots

⌅ Regress y on everything but x
j

; take residuals r
y |�x

j

⌅ Regress x
j

on everything but x
j

; take residuals r
x

j

|�x

j

⌅ Regress r
y |�x

j

on r

x

j

|�x

j

; slope of this line will match �
j

in the
full MLR

⌅ Plot of r
y |�x

j

against r
x

j

|�x

j

shows the “adjusted” relationship

⌅ This figure can be used to diagnose violations of linearity in
MLR models.



AV plots

coef(mlr1)

## (Intercept) crowding education airqual

## -7.7505215 1.3127837 1.4376563 0.2880687

avPlot(mlr1, variable="airqual")
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AV plots

coef(mlr1)

## (Intercept) crowding education airqual

## -7.7505215 1.3127837 1.4376563 0.2880687

avPlot(mlr1, variable="education")
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Model checking: possible solutions

⌅ Global lack of fit, or general breakdown of model assumptions
I Residual analysis – QQ plots, residual plots against fitted

values and predictors
I Adjusted variable plots

⌅ E↵ect of influential points and outliers
I Measure of leverage, influence, outlying-ness



Isolated points

Points can be isolated in three ways

⌅ Leverage point – outlier in x , measured by hat matrix

⌅ Outlier – outlier in y , measured by residual

⌅ Influential point – a point that largely a↵ects �
I Deletion influence; |�̂ � �̂

(�i)

|
I Basically, a high-leverage outlier



Quantifying leverage

We measure leverage (the “distance” of x
i

from the distribution of
x) using

h

ii

= xT
i

(XTX)�1x
i

where h

ii

is the (i , i)th entry of the hat matrix. Where, recall

H = X(XTX)�1XT



Quantifying Leverage via the Hat Matrix

Note that X

i

h

ii

def

= tr(H) = p

where p is the total number of independent predictors (i.e. �s) in
your model (including a �

0

if you have one).

What counts as “big” leverage?

⌅ Average leverage is p/n

⌅ Typical rules of thumb are 2p/n or 3p/n

⌅ Leverage plots can be useful as well



Example Leverage plot with lung data

mlr <- lm(disease ~ nutrition+ airqual + crowding + smoking,

data=data)

hii <- hatvalues(mlr)

x <- 1:length(hii)

qplot(x, hii, geom="point")
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Example Leverage plot with lung data

Can be useful to investigate specific points.

cols <- c("disease", "crowding", "education", "airqual")

summary(data[,cols])

## disease crowding education airqual

## Min. :30.00 Min. :14.00 Min. : 5.000 Min. : 2.00

## 1st Qu.:42.50 1st Qu.:21.00 1st Qu.: 8.000 1st Qu.:31.00

## Median :51.00 Median :25.00 Median :10.000 Median :41.00

## Mean :49.92 Mean :24.47 Mean : 9.566 Mean :40.92

## 3rd Qu.:55.00 3rd Qu.:28.00 3rd Qu.:11.000 3rd Qu.:54.00

## Max. :78.00 Max. :42.00 Max. :14.000 Max. :78.00

(d <- data[which(hii>.15), cols])

## disease crowding education airqual

## 69 39 20 8 54

## 70 70 42 12 19



Example Leverage plot with lung data

Can be useful to investigate specific points.

library(gridExtra)

p1 <- ggplot(data) + geom_histogram(aes(x=crowding), fill="grey") +

geom_vline(xintercept=d[1,"crowding"], color="red") +

geom_vline(xintercept=d[2,"crowding"], color="blue")

p2 <- ggplot(data) + geom_histogram(aes(x=airqual), fill="grey") +

geom_vline(xintercept=d[1,"airqual"], color="red") +

geom_vline(xintercept=d[2,"airqual"], color="blue")

grid.arrange(p1, p2, ncol=2)
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Outliers

⌅ When we refer to “outliers” we typically mean “points that
don’t have the same mean structure as the rest of the data”

⌅ Residuals give an idea of “outlying-ness”, but we need to
standardize somehow

⌅ We can use the fact that Var(✏̂
i

) = �2(1� h

ii

) ...



Outliers

The standardized residual is given by

✏̂⇤
i

=
✏̂
ip

Var(✏̂
i

)
=

✏̂
i

�̂
p
(1� h

ii

)

The Studentized residual is given by

t

i

=
✏̂
(�i)

�̂
(�i)

p
(1� h

ii

)
= ✏̂⇤

i

✓
n � p

n � p � ✏̂⇤2
i

◆
1/2

Studentized residuals follow a t

n�p�1

distribution.



Influence

Intuitively, “influence” is a combination of outlying-ness and
leverage. More specifically, we can measure the “deletion
influence” of each observation: quantify how much �̂ changes if an
observation is left out.

⌅ |�̂ � �̂
(�i)

|
⌅ Cook’s distance is

D

i

=
(�̂ � �̂

(i)

)T (XTX)(�̂ � �̂
(i)

)

p�̂2

=
(ŷ � ŷ

(�i)

)T (ŷ � ŷ
(�i)

)

p�̂2

=
1

p
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Handy R functions

Suppose you fit a linear model in R;

⌅ hatvalues gives the diagonal elements of the hat matrix h

ii

(leverages)

⌅ rstandard gives the standardized residuals

⌅ rstudent gives the studentized residuals

⌅ cooks.distance gives the Cook’s distances



Built-in R plots for lm objects
You can also use the plot.lm() function to look at leverage,
outlying-ness, and influence all together. Recall that

D

i

=
1

p

✏̂⇤
2

i

h

ii

1� h

ii

plot(mlr, which=5)
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Model checking summary

You are looking for...

⌅ Points that show worrisome level of influence =) sensitivity
analysis!

⌅ Systematic departures from model assumptions =)
transformations, di↵erent model structure

⌅ Unrealistic outliers =) check your data!

No points show worrisome influence in this lung data analysis,
although observation 70 showed up in both of our analyses.
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Back to the outline

⌅ Model checking and diagnostics

⌅ Variable transformations



Overview of variable transformations

The problems

⌅ Non-linearity between X and Y �! transform X

⌅ Skewed distribution of X s/points with high leverage �!
transform X

⌅ Non-constant variance �! transform Y



Transforming your X variables

Transforming predictor variables can help with constant-variance
non-linear relationships.
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Transforming your X variables
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� interpretations with transformed X s

Transforming predictor variables can help with non-linearities, but
can make coe�cient interpretations hard.

Possible solutions

⌅ Interpret �s qualitatively across a region of interest: “We
found strong evidence for an inverse association, where values
of Y were inversely proportional to X across the observed
range (a, b).

⌅ Occasionally, a “one unit change in X” can be meaningful:
e.g. log

a

X . A one unit change in log
a

X indicates a a-fold
increase in X .



� interpretations with transformed X s

⌅ Transforming predictor variables can help with non-linearities,
but can make coe�cient interpretations hard.

⌅ Can also use polynomials, splines (more soon!).



Transforming Y s for non-constant variance

What to do ...

⌅ Nothing; just use least squares and bootstrap

⌅ Use weighted LS, GLS (Biostat Methods 3?)

⌅ Use a variance stabilizing transformation

⌅ Consider a generalized linear model (more soon)



Box-Cox Transformations

Outcome is raised to the � power:

y

�
i

= �
0

+ �
1

x

i1

+ �
2

x

i2

+ ✏
i

⌅ Estimate �, a new parameter, by maximum likelihood.

⌅ Some well-known choices of �: 2, -1, 1/2

⌅ By definition, when � = 0, we specify y

�
i

= log
e

y

i



Today’s big ideas

⌅ Model checking

⌅ Variable transformations

⌅ Next up: inference about MLR parameters


