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Today's lecture

Multiple Linear Regression: basic concepts

m Motivation

Assumptions

Interpretation of s

= More on confounding (omitted variable bias)
m Matrix notation for MLR

Relevant reading: Faraway Chapter 2, ISL Chapter 3.2-3.3



Motivation

Most applications involve more that one covariate — if more than
one thing can influence an outcome, you need multiple linear

regression.
m Improved description Of}/@g L ()\//J*;E;C_L
X

m More accurate estimates and predictions
m Allow testing of multiple effects

m Includes multiple predictor types



Why not bin all predictors?

m Divide x; into k; bins

Stratify data based on inclusion in bins across x's

m Find mean of the y; in each category

Possibly a reasonable non-parametric model



Why not bin all predictors?
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Why not bin all predictors?

m More predictors = more bins

m If each x has 5 bins, you have 5P overall categories

May not have enough data to estimate distribution in each

category

m Curse of dimensionality is a problem in a lot of non-parametric
statistics

For more, see this interactive Shiny app.



Multiple linear regression model

m Observe data (y;, X1, ..., Xjp) for subjects 1,...,n. Want to
estimate 3o, 31, ..., Bp in the model

iid
yi=PBo+ Pixii+ ...+ 5PXip +¢€i; € ~ (0,0%)

m Assumptions (residuals have mean zero, constant variance, are
independent) are as in SLR

m Impose linearity which (as in the SLR) is a big assumption
m Our primary interest will be E(y|x)

m Eventually estimate model parameters using least squares



Predictor types

m Continuous / Noirm V\(L\
m Categorical
m Ordinal R
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Interpretation of coefficients

60 = E(y|X1 = 07"'7X(: O)
m Centering some of the x's may make this more interpretable



Interpretatlon of 61
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Interpretation of [,

b1 = the expected change in y for a one unit increase in x,
holding all other x's constant.



Example with two predictors

7

Suppose we want to regress weight on age and sex.
m Model is y; = Bo + B1Xi,age + B2Xi sex + €

m Age is continuous starting with age 0; sex is binary, coded so
that X sex = 0 for men and X; sex = 1 for women



Example with two predictors

Model: y; = Bo + ﬂlxi,age + B2Xi,sex + €
Bi= Expuedd elwgr vy o 0 1 ush do e
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Example with two predictors
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Omitted variable bias

What happens if the true regression model is

yi = Bo + Pixi1 + Baxi2 + €;

but we ignore x> and fit the simple linear regression

yi=PBo + Bixia+ €
/_\
Does ] = 17



Omitted variable bias

When should you be concerned?
If both of the following conditions are met, then 5] = f1:
m The omitted variable is unrelated to the outcome

m T he omitted variable is uncorrelated with the retained variable

Note: A Simpson's paradox can be explained by omitted variable
bias.



Matrix notation

m Observe data (y;, X1, . . ., Xjp) for subjects 1,...,n. Want to
estimate 3o, 31, ..., Bp in the model

iid
yi = Bo+ Bixi + ...+ Pixip + €5 € ~ (0,07)

m Notation is cumbersome. To fix this, let

| | X,'Z[].,X,'17...,X,'p]
u IBT:[ﬁ07617"'7ﬂp]
m Then y; =x;8+¢;



Multiple linear regression

X1
>( = A\*
X
m Let
y1 1 x1 ... xp Bo €1
Yn 1 xp1 ’ Xnp Bp €n

; = XG +Z
m Then we can write the model in a more compact form:

Ynx1 = XnX(p+l)B(p+l)><1 + €nx1
—— ———

m X is called the design matrix



Matrix notation [ ‘
. O
!

y=XB+e
m ¢ is a random vector rather than a random variable
m E(e) =0 and Cov(e) = o2/

m Note¢ that Cov means the “variance-covariance matrix”

> E[{—() i)



Mean, variance and covariance of a random vector

m Lety” =[y1,...,yn] be an n-component random vector.
Then its mean and variance are defined as

E(Y)T = [E(yl)’ ) E(yn)]
Var(y) = E|(y—Ey)(y—Ey)"| =E(yy”) — (Ey)(Ey)"

m Let y and z be an n-component and an m-component random
vector respectively. Then their covariance is an n X m matrix
defined by

Cov(y,z) = E[(y — Ey)(z—2)"]



Coming up next...

Today we covered

m Motivation

Assumptions

Interpretation of (s
= More on confounding (omitted variable bias)
m Matrix notation for MLR

Next time...

» estimation (more least squares)
» more detailed model diagnostics

> inference



