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Today’s lecture

Multiple Linear Regression: basic concepts

⌅ Motivation

⌅ Assumptions

⌅ Interpretation of �s

⌅ More on confounding (omitted variable bias)

⌅ Matrix notation for MLR

Relevant reading: Faraway Chapter 2, ISL Chapter 3.2-3.3



Motivation

Most applications involve more that one covariate – if more than
one thing can influence an outcome, you need multiple linear
regression.

⌅ Improved description of y |x
⌅ More accurate estimates and predictions

⌅ Allow testing of multiple e↵ects

⌅ Includes multiple predictor types



Why not bin all predictors?

⌅ Divide x

i

into k

i

bins

⌅ Stratify data based on inclusion in bins across x ’s

⌅ Find mean of the y

i

in each category

⌅ Possibly a reasonable non-parametric model



Why not bin all predictors?
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Why not bin all predictors?

⌅ More predictors = more bins

⌅ If each x has 5 bins, you have 5p overall categories

⌅ May not have enough data to estimate distribution in each
category

⌅ Curse of dimensionality is a problem in a lot of non-parametric
statistics

For more, see this interactive Shiny app.



Multiple linear regression model

⌅ Observe data (y
i

, x
i1, . . . , xip) for subjects 1, . . . , n. Want to

estimate �0,�1, . . . ,�p in the model

y

i

= �0 + �1xi1 + . . .+ �1xip + ✏
i

; ✏
i

iid⇠ (0,�2)

⌅ Assumptions (residuals have mean zero, constant variance, are
independent) are as in SLR

⌅ Impose linearity which (as in the SLR) is a big assumption

⌅ Our primary interest will be E (y |x)
⌅ Eventually estimate model parameters using least squares



Predictor types

⌅ Continuous

⌅ Categorical

⌅ Ordinal



Interpretation of coe�cients

�0 = E (y |x1 = 0, . . . , x = 0)

⌅ Centering some of the x ’s may make this more interpretable



Interpretation of �1



Interpretation of �1

�1 = the expected change in y for a one unit increase in x1,
holding all other x ’s constant.



Example with two predictors

Suppose we want to regress weight on age and sex.

⌅ Model is y
i

= �0 + �1xi ,age + �2xi ,sex + ✏
i

⌅ Age is continuous starting with age 0; sex is binary, coded so
that x

i ,sex = 0 for men and x

i ,sex = 1 for women



Example with two predictors

Model: y
i

= �0 + �1xi ,age + �2xi ,sex + ✏
i

�1 =

�2 =



Example with two predictors
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Omitted variable bias

What happens if the true regression model is

y

i

= �0 + �1xi ,1 + �2xi ,2 + ✏
i

but we ignore x2 and fit the simple linear regression

y

i

= �⇤
0 + �⇤

1xi ,1 + ✏⇤
i

Does �⇤
1 = �1?



Omitted variable bias

When should you be concerned?

If both of the following conditions are met, then �⇤
1 = �1:

⌅ The omitted variable is unrelated to the outcome

⌅ The omitted variable is uncorrelated with the retained variable

Note: A Simpson’s paradox can be explained by omitted variable
bias.



Matrix notation

⌅ Observe data (y
i

, x
i1, . . . , xip) for subjects 1, . . . , n. Want to

estimate �0,�1, . . . ,�p in the model

y

i

= �0 + �1xi1 + . . .+ �1xip + ✏
i

; ✏
i

iid⇠ (0,�2)

⌅ Notation is cumbersome. To fix this, let

⌅ x

i

= [1, x
i1, . . . , xip]

⌅ �T = [�0,�1, . . . ,�
p

]
⌅ Then y

i

= x

i

� + ✏
i



Multiple linear regression
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⌅ Then we can write the model in a more compact form:

y

n⇥1 = X

n⇥(p+1)�(p+1)⇥1 + ✏
n⇥1

⌅ X is called the design matrix



Matrix notation

y = X� + ✏

⌅ ✏ is a random vector rather than a random variable

⌅ E (✏) = 0 and Cov(✏) = �2
I

⌅ Note that Cov means the “variance-covariance matrix”



Mean, variance and covariance of a random vector

⌅ Let yT = [y1, . . . , yn] be an n-component random vector.
Then its mean and variance are defined as

E (y)T = [E (y1), . . . ,E (yn)]

Var(y) = E

h
(y � Ey)(y � Ey)T

i
= E (yyT )� (Ey)(Ey)T

⌅ Let y and z be an n-component and an m-component random
vector respectively. Then their covariance is an n ⇥m matrix
defined by

Cov(y, z) = E

⇥
(y � Ey)(z� z)T

⇤



Coming up next...

Today we covered

⌅ Motivation

⌅ Assumptions

⌅ Interpretation of �s

⌅ More on confounding (omitted variable bias)

⌅ Matrix notation for MLR

Next time...

I estimation (more least squares)

I more detailed model diagnostics

I inference


