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Figure acknowledgements to Hadley Wickham.
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Which data show a stronger association?



Goals for this class

You should be able to...

interpret regression coefficients.

m derive estimators for SLR coefficients.

m implement a SLR from scratch (i.e. not using Im()).

m explain why some points have more influence than others on
the fitted line.



Regression modeling

m Want to use predictors to learn about the outcome
distribution, particularly conditional expected value.

m Formulate the problem parametrically

E(y | x) =f(x;8) = Bo + Brx + faxz + ...

m (Note that other useful quantities, like covariance and
correlation, tell you about the joint distribution of y and x)



Brief Detour: Covariance and Correlation

cov(x,y) = E[(x— )y —py)]
L covxy)

cor(x,y) = var(x)var(y)



Simple linear regression

m Linear models are a special case of all regression models;
simple linear regression is the simplest place to start

Only one predictor:

E(y | x) = f(x; 8) = Bo + fixa

m Useful to note that xo = 1 (implicit definition)

m Somehow, estimate By, 51 using observed data.



Coefficient interpretation



Coefficient interpretation




Step 1: Always look at the datal

m Plot the data using, e.g. the plot () or gplot () functions
m Do the data look like the assumed model?
m Should you be concerned about outliers?

m Define what you expect to see before fitting any model.



Least squares estimation

m Observe data (y;, x;) for subjects 1,...,/. Want to estimate
Bo, 81 in the model

60 + /lel + €y €~ ”d (07 02)

m Recall the assumptions:
m Al: The model: e.g. y; = f(x;; 8) + € = o+ Pixi1 + €
m A2: Unbiased errors: E[e;|x;] = E[e;] =0
m A3: Uncorrelated errors: cov(ej, €j) = 0 for i # j.
m A4: Constant variance: Var[y;|x;] = 02
"

A5: Probability distribution: e.g. €; i N(0,0?)
[not needed for LS, is needed for inference].
Ab6: Representative sampling: generalize to population.



Any violations of assumptions? (Ex. 1)

257 0 o e .
° ... °
L] . Py °
° [ )
0.0- R o
L] LX) L]
”~
° S
= ..‘-u ~
28 o el .
o ® oo
° ..'
L]
-5.0- °e’
L]
LN J
-2 -1 0 1




Any violations of assumptions? (Ex. 1)

x1 <- rnorm(100)

yl = -2-2xx1 + rnorm(100, 0, .5)

x1[1] <= 3; yi[1] <= .2
gplot(x1l, y1)
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Any violations

of assumptions? (Ex. 2)
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Any violations of assumptions? (Ex. 2)

x2 <- rnorm(100)
y2 = —2+2%(x2+1)°2 + rnorm(100, 0, 2)
gplot(x2, y2)
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Any violations of assumptions? (Ex. 3)
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Any violations of assumptions? (Ex. 3)

x3 <- abs(rnorm(100, mean=2))
y3 = —2+4%x3 + rnorm(100, 0, x3%2)
gplot(x3, y3)
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Any violations of assumptions? (Ex. 4)

library(cdcfluview)
library(dplyr)
usflu <- get_flu_data("national", "ilinet", years=2013:2015)
usflu <- mutate(usflu,
date = as.Date(pasteO(YEAR, sprintf("%02d", WEEK), "00"),
format="%Y%W/w"),
ili_weighted = X.UNWEIGHTED.ILI)
ggplot (usflu, aes(x=date, y=ili_weighted)) + geom_point ()
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Any violations of assumptions? (Ex. 4)

fml <- Im(ili_weighted“date, data=usflu)
residl <- resid(fml)
acf (residl)
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Least squares estimation

m Recall that for a single sample y;,i € 1,..., N, the sample
mean /i, minimizes the sum of squared deviations.

N
RSS(my) = > (vi—py)?

i=1



Least squares estimation
Find 5o and B1. By minimizing RSS relative to each parameter

N

RSS(Bo, /1) = Z(}/i - E[y;|X,'])2

i=1

We obtain
Bo = by = y—bix
A 2 =x)i —y)
D R




Notes about LSE

Relationship between correlation and slope
cov(x,y) _ cov(x,y)

var(x)var(y)’ ' var(x)

Why we need to keep watch for outliers
5~ ZUi=9(s—9)
1 (i — %P2

Note that weight w; increases as x; gets further away from Xx.



Geometric interpretation of least squares

Least squares minimizes the sum of squared vertical distances
between observed and estimated y's:

min

Bo, B Z — (Bo + B1xi))?

A

L




Least squares foreshadowing

m Didn't have to choose to minimize squares — could minimize
absolute value, for instance.

m Least squares estimates turn out to be a “good idea” —
unbiased, BLUE (Best Linear Unbiased Estimator).

m Later we'll see about maximum likelihood as well.



Lab exercise: computing 8 on your own

m Load the heights data from lecture 1.

m Run a linear model using the R function 1m(), with daughter
height as the outcome.

m Compare the results of that regression with hand-calculated
5o and Sy coefficients.

install.packages("alr3")

library(alr3)

data(heights)

fml <- Im(Dheight ~ Mheight, data=heights)
summary (fm1)



