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Which data show a stronger association?
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Goals for this class

You should be able to...

� interpret regression coefficients.

� derive estimators for SLR coefficients.

� implement a SLR from scratch (i.e. not using lm()).

� explain why some points have more influence than others on
the fitted line.



Regression modeling

� Want to use predictors to learn about the outcome
distribution, particularly conditional expected value.

� Formulate the problem parametrically

E(y | x) = f (x ;β) = β0 + β1x1 + β2x2 + . . .

� (Note that other useful quantities, like covariance and
correlation, tell you about the joint distribution of y and x)



Brief Detour: Covariance and Correlation

cov(x , y) = E [(x − µx)(y − µy )]

cor(x , y) =
cov(x , y)√
var(x)var(y)



Simple linear regression

� Linear models are a special case of all regression models;
simple linear regression is the simplest place to start

� Only one predictor:

E(y | x) = f (x ;β) = β0 + β1x1

� Useful to note that x0 = 1 (implicit definition)

� Somehow, estimate β0, β1 using observed data.



Coefficient interpretation



Coefficient interpretation



Step 1: Always look at the data!

� Plot the data using, e.g. the plot() or qplot() functions

� Do the data look like the assumed model?

� Should you be concerned about outliers?

� Define what you expect to see before fitting any model.



Least squares estimation

� Observe data (yi , xi ) for subjects 1, . . . , I . Want to estimate
β0, β1 in the model

yi = β0 + β1xi + εi ; εi
iid∼ (0, σ2)

� Recall the assumptions:

� A1: The model: e.g. yi = f (xi ;β) + εi = β0 + β1xi,1 + εi
� A2: Unbiased errors: E[εi |xi ] = E[εi ] = 0
� A3: Uncorrelated errors: cov(εi , εj) = 0 for i 6= j .
� A4: Constant variance: Var [yi |xi ] = σ2

� A5: Probability distribution: e.g. εi
iid∼ N(0, σ2)

[not needed for LS, is needed for inference].
� A6: Representative sampling: generalize to population.



Any violations of assumptions? (Ex. 1)
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Any violations of assumptions? (Ex. 1)

x1 <- rnorm(100)

y1 = -2-2*x1 + rnorm(100, 0, .5)

x1[1] <- 3; y1[1] <- .2

qplot(x1, y1)
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Any violations of assumptions? (Ex. 2)
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Any violations of assumptions? (Ex. 2)

x2 <- rnorm(100)

y2 = -2+2*(x2+1)^2 + rnorm(100, 0, 2)

qplot(x2, y2)
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Any violations of assumptions? (Ex. 3)
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Any violations of assumptions? (Ex. 3)

x3 <- abs(rnorm(100, mean=2))

y3 = -2+4*x3 + rnorm(100, 0, x3*2)

qplot(x3, y3)
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Any violations of assumptions? (Ex. 4)
library(cdcfluview)

library(dplyr)

usflu <- get_flu_data("national", "ilinet", years=2013:2015)

usflu <- mutate(usflu,

date = as.Date(paste0(YEAR, sprintf("%02d", WEEK), "00"),

format="%Y%W%w"),

ili_weighted = X.UNWEIGHTED.ILI)

ggplot(usflu, aes(x=date, y=ili_weighted)) + geom_point()
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Any violations of assumptions? (Ex. 4)

fm1 <- lm(ili_weighted~date, data=usflu)

resid1 <- resid(fm1)

acf(resid1)
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Least squares estimation

� Recall that for a single sample yi , i ∈ 1, . . . ,N, the sample
mean µ̂y minimizes the sum of squared deviations.

RSS(µy ) =
N∑
i=1

(yi − µy )2



Least squares estimation

Find β̂0 and β1. By minimizing RSS relative to each parameter.

RSS(β0, β1) =
N∑
i=1

(yi − E[yi |xi ])2

We obtain

β̂0 = b0 = ȳ − b1x̄

β̂1 = b1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2



Notes about LSE

Relationship between correlation and slope

ρ =
cov(x , y)√
var(x)var(y)

; β1 =
cov(x , y)

var(x)

Why we need to keep watch for outliers

β̂1 =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2

=

∑ yi−ȳ
xi−x̄ (xi − x̄)2∑

(xi − x̄)2

=
∑ yi − ȳ

xi − x̄
ωi

Note that weight ωi increases as xi gets further away from x̄ .



Geometric interpretation of least squares

Least squares minimizes the sum of squared vertical distances
between observed and estimated y ’s:

min
β0, β1

I∑
i=1

(yi − (β0 + β1xi ))2



Least squares foreshadowing

� Didn’t have to choose to minimize squares – could minimize
absolute value, for instance.

� Least squares estimates turn out to be a “good idea” –
unbiased, BLUE (Best Linear Unbiased Estimator).

� Later we’ll see about maximum likelihood as well.



Lab exercise: computing β̂ on your own

� Load the heights data from lecture 1.

� Run a linear model using the R function lm(), with daughter
height as the outcome.

� Compare the results of that regression with hand-calculated
β̂0 and β̂1 coefficients.

# sample code

install.packages("alr3")

library(alr3)

data(heights)

fm1 <- lm(Dheight ~ Mheight, data=heights)

summary(fm1)


