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Today’s Lecture

� Generalized linear models (GLMs)

� Logistic regression

[Note: more on logistic regression can be found in ISL, Chapter
4.1-4.3, and the OpenIntro Statistics textbook, Chapter 8. These
slides are based, in part, on the slides from OpenIntro.]



Regression so far ...

At this point we have covered:

I Simple linear regression

I Relationship between numerical response and a numerical or
categorical predictor

I Multiple regression

I Relationship between numerical response and multiple
numerical and/or categorical predictors

I What to do when the relationships with the predictors are
complex (nonlinear, skewed distribution, interactions,
confounding, etc.)

What we haven’t covered is what to do when the response is not
continuous (i.e. categorical, count data, etc.)



Example - Birdkeeping and Lung Cancer

A 1972 - 1981 health survey in The Hague, Netherlands,
discovered an association between keeping pet birds and increased
risk of lung cancer. To investigate birdkeeping as a risk factor,
researchers conducted a case-control study of patients in 1985 at
four hospitals in The Hague (population 450,000). They identified
49 cases of lung cancer among the patients who were registered
with a general practice, who were age 65 or younger and who had
resided in the city since 1965. They also selected 98 controls from
a population of residents having the same general age structure.

Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth: A Course in Methods of Data Analysis (2nd ed)



Example - Birdkeeping and Lung Cancer - Data

library(Sleuth3)

birds = case2002

head(birds)

## LC FM SS BK AG YR CD

## 1 LungCancer Male Low Bird 37 19 12

## 2 LungCancer Male Low Bird 41 22 15

## 3 LungCancer Male High NoBird 43 19 15

## 4 LungCancer Male Low Bird 46 24 15

## 5 LungCancer Male Low Bird 49 31 20

## 6 LungCancer Male High NoBird 51 24 15

LC Whether subject has lung cancer
FM Sex of subject
SS Socioeconomic status
BK Indicator for birdkeeping
AG Age of subject (years)
YR Years of smoking prior to diagnosis or examination
CD Average rate of smoking (cigarettes per day)

NoCancer is the reference response (0 or failure), LungCancer is the non-reference response (1 or success) - this
matters for interpretation.



Lung cancer as a function of cigarettes per day

(p <- ggplot(birds, aes(x=CD, y=as.numeric(LC=="LungCancer")*1)) +

geom_jitter(height=0) + geom_smooth(method="lm", se=FALSE) +

ylab("Lung Cancer") + xlab("Cigarettes per day") +

scale_y_continuous(breaks=c(0,1)))
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Generalized linear models

E[Y |x ] = β0 + β1X1 + · · ·+ βpXp

Why not just use MLR when outcomes not continuous?

� Linearity assumption may be more unreasonable than usual.
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Generalized linear models

E[Y |x ] = β0 + β1X1 + · · ·+ βpXp

Why not just use MLR when outcomes not continuous?

� Equal variance assumption often violated (Var [Y |x ] = σ2).
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Generalized linear models

E[Y |x ] = β0 + β1X1 + · · ·+ βpXp

Why not just use MLR when outcomes not continuous?

� Assumption of normal errors explicitly violated.
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Generalized linear models: defined

All generalized linear models have the following three
characteristics:

1. A probability distribution describing the outcome variable

I e.g. Y ∼ Bernoulli(p) −→ E[Y |p] = p.

2. A linear model
I η = β0 + β1X1 + · · ·+ βpXp

3. A link function that relates the linear model to the
parameter of the outcome distribution
I g(E[Y ]) = g(p) = η or E[Y ] = p = g−1(η)



Gaussian MLR is a special case of a GLM

For continuous outcome, we often do this

1. A probability distribution describing the outcome variable

I Y |X ∼ Normal(µ, σ2) −→ E[Y |X ] = µ.

2. A linear model
I η = β0 + β1X1 + · · ·+ βpXp

3. A link function that relates the linear model to the
parameter of the outcome distribution
I g(E[Y |X ]) = g(µ) = µ = η

g(E[Y |X ]) = E [Y |X ] = µ = β0 + β1X1 + · · ·+ βpXp



Logistic regression: a common GLM for 0/1 outcome data

1. A probability distribution describing the outcome variable

I Y |X ∼ Bernoulli(p) −→ E[Y |X ] = Pr(Y = 1|X ) = p.

2. A linear model
I η = β0 + β1X1 + · · ·+ βpXp

3. A link function that relates the linear model to the
parameter of the outcome distribution
I g(E[Y |X ]) = g(p) = logit(p) = log p

1−p = η

g(E[Y |X ]) = logit[Pr(Y = 1|X )] = β0 + β1X1 + · · ·+ βpXp



Odds

Odds are another way of quantifying the probability of an event,
commonly used in gambling (and logistic regression).

For some event E ,

odds(E ) =
P(E )

P(E c)
=

P(E )

1− P(E )

Similarly, if we are told the odds of E are x to y then

odds(E ) =
x

y
=

x/(x + y)

y/(x + y)

which implies

P(E ) = x/(x + y), P(E c) = y/(x + y)



Logistic regression has log(odds) as the link
A logistic regression model can be defined as follows:

Yi |xi ∼ Bernoulli(pi )

E[Yi |xi ] = Pr(Yi = 1|xi ) = pi

g(pi ) = logit(pi ) = log
pi

1− pi

logit(E[Yi |xi ]) = logit(pi ) = η = β0 + β1Xi1 + · · ·+ βpXip

p =
ex

1 + ex
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Example - Birdkeeping and Lung Cancer - Model

logitPr(LC = 1|x) = β0+β1BK+β2FM+β3SS+β4AG+β5YR+β6CD

birds$LCnum <- as.numeric(birds$LC=="LungCancer")

birds$BK <- relevel(birds$BK, ref="NoBird")

lm1 <- glm(LCnum ~ BK + FM + SS + AG + YR + CD,

data=birds, family=binomial)



Example - Birdkeeping and Lung Cancer - Interpretation

summary(lm1)$coef

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -1.27063830 1.82530568 -0.6961236 0.4863514508

## BKBird 1.36259456 0.41127585 3.3130916 0.0009227076

## FMMale -0.56127270 0.53116056 -1.0566912 0.2906525319

## SSLow -0.10544761 0.46884614 -0.2249088 0.8220502474

## AG -0.03975542 0.03548022 -1.1204952 0.2625027758

## YR 0.07286848 0.02648741 2.7510612 0.0059402544

## CD 0.02601689 0.02552400 1.0193110 0.3080553359

Keeping all other predictors constant then,

I The odds ratio of getting lung cancer for bird keepers vs
non-bird keepers is exp(1.3626) = 3.91.

I The odds ratio of getting lung cancer for an additional year of
smoking is exp(0.0729) = 1.08.



What the numbers do not mean ...

The most common mistake made when interpreting logistic
regression is to treat an odds ratio as a ratio of probabilities.

Bird keepers are not 4x more likely to develop lung cancer than
non-bird keepers.

This is the difference between relative risk and an odds ratio.

RR =
P(disease|exposed)

P(disease|unexposed)

OR =
P(disease|exposed)/[1− P(disease|exposed)]

P(disease|unexposed)/[1− P(disease|unexposed)]



To match or not to match

Case-control studies are common for (rare) binary outcomes

� Randomly selected controls −→ vanilla logistic regression

� Matched controls −→ conditional logistic regression

Conditional logistic regression

� Accounts for the fact that you have “adjusted” for some
variables in the design.

� Calculates an OR for each matched-set/pair, then “averages”
across sets

� Forfeits ability to estimate effects of matched variables, but
design can substantially improve power.

� Implemented in R with clogit().



Important notes about GLMs

On logistic regression in particular...

� There are other link functions for binary data (e.g. probit,
cloglog).

� Other, less parametric methods may be appropriate here too –
e.g. CART, random forests, classification algorithms.

Beyond the scope of this course, but interesting topics...

� How are logistic models (and other GLMs) fitted?

� Can we perform the same kind of model diagnostics to
determine whether a model provides a good fit to data?

� Do we have the same power to infer smooth splines in
non-Gaussian GLMs?

� ROC curves and classification rules


