
Using splines in regression

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported
License: http://creativecommons.org/licenses/by-sa/3.0/deed.en US

Today’s Lecture

� Spline models

� Penalized spline regression

More info:

� Harrel, Regression Modeling Strategies, Chapter 2, PDF
handout

� ISL Chapter 7

Piecewise linear models

A piecewise linear model (also called a change point model or
broken stick model) contains a few linear components

� Outcome is linear over full domain, but with a different slope
at different points

� Points where relationship changes are referred to as “change
points” or “knots”

� Often there’s one (or a few) potential change points

Piecewise linear models

Suppose we want to estimate E(y |x) = f (x) using a piecewise
linear model.

� For one knot we can write this as

E(y |x) = β0 + β1x + β2(x − κ)+

where κ is the location of the change point and

(x − κ)+ =

Interpretation of regression coefficients

E(y |x) = β0 + β1x + β2(x − κ)+

� β0 = E[y |x = 0] (assuming κ > 0)

� β1 =

Expected change in y for a 1-unit increase in x , when
x < κ

� β2 =

Change in slope between x < κ and x > κ

� β1 + β2 =

Expected change in y for a 1-unit increase in x ,
when x ≥ κ

Interpretation of regression coefficients

E(y |x) = β0 + β1x + β2(x − κ)+

� β0 = E[y |x = 0] (assuming κ > 0)

� β1 = Expected change in y for a 1-unit increase in x , when
x < κ

� β2 =

Change in slope between x < κ and x > κ

� β1 + β2 =

Expected change in y for a 1-unit increase in x ,
when x ≥ κ

Interpretation of regression coefficients

E(y |x) = β0 + β1x + β2(x − κ)+

� β0 = E[y |x = 0] (assuming κ > 0)

� β1 = Expected change in y for a 1-unit increase in x , when
x < κ

� β2 = Change in slope between x < κ and x > κ

� β1 + β2 =

Expected change in y for a 1-unit increase in x ,
when x ≥ κ

Interpretation of regression coefficients

E(y |x) = β0 + β1x + β2(x − κ)+

� β0 = E[y |x = 0] (assuming κ > 0)

� β1 = Expected change in y for a 1-unit increase in x , when
x < κ

� β2 = Change in slope between x < κ and x > κ

� β1 + β2 = Expected change in y for a 1-unit increase in x ,
when x ≥ κ

Estimation

� Piecewise linear models are low-dimensional (no need for
penalization)

� Parameters are estimated via OLS

� The design matrix is ...

Multiple knots

Suppose we want to estimate E(y |x) = f (x) using a piecewise
linear model.

� For multiple knots we can write this as

E(y |x) = β0 + β1x +
K∑

k=1

βk+1(x − κk)+

where {κk}Kk=1 are the locations of the change points

� Note that knot locations are defined before estimating
regression coefficients

� Also, regression coefficients are interpreted conditional on the
knots.

Example: lidar data

library(MASS)

library(SemiPar)

data(lidar)

y = lidar$logratio

range = lidar$range

qplot(range, y)

−0.75

−0.50

−0.25

0.00

400 500 600 700
range

y

Example: lidar data

knots <- c(550, 625)

mkSpline <- function(k, x) (x - k > 0) * (x - k)

X.des = cbind(1, range, sapply(knots, FUN=mkSpline, x=range))

colnames(X.des) <- c("intercept", "range", "range1", "range2")

lm.lin = lm(y ~ X.des - 1)

plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)

points(range, lm.lin$fitted.values, type = 'l', col = "red", lwd = 2)

400 450 500 550 600 650 700

−
0.

8
−

0.
4

0.
0

Range

lo
g

ra
tio

Example: lidar data

summary(lm.lin)$coef

Estimate Std. Error t value Pr(>|t|)

X.desintercept -1.444288e-02 0.0687353855 -0.2101230 8.337689e-01

X.desrange -8.407376e-05 0.0001426647 -0.5893102 5.562663e-01

X.desrange1 -7.042794e-03 0.0003834218 -18.3682689 4.379404e-46

X.desrange2 5.723186e-03 0.0005153479 11.1054811 5.554824e-23

Piecewise quadratic and cubic models

Suppose we want to estimate E(y |x) = f (x) using a piecewise
quadratic model.

� For multiple knots we can write this as

E(y |x) = β0 + β1x + β1x
2 +

K∑
k=1

βk+2(x − κk)2+

where {κk}Kk=1 are the locations of the change points

� Similar extension for cubics

� Piecewise quadratic models are smooth and have continuous
first derivatives

Pros and cons of piecewise models

Piecewise (linear, quadratic, etc) models have several advantages

� Easy construction of basis functions

� Flexible, and don’t rely on determining an appropriate form
for f (x) using standard functions

� Allow for significance testing on change point slopes

� Fairly direct interpretations

Disadvantages

� knot specification is often arbitrary

B-splines and natural splines

Characteristics

� Both B-splines and natural splines similarly define a basis over
the domain of x

� Can be constrained to have seasonal patterns

� They are made up of piecewise polynomials of a given degree,
and have defined derivatives similarly to the piecewise defined
functions

� Big advantage over linear splines: parameter estimation is
often fairly robust to your choice of knots

� Big disadvantage over linear splines: harder to interpret
specific coefficients

B-splines basis functions

E(y |x) = β0 +
6∑

j=1

βjBj(x)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B−splines − sum to 1 inside inner knots

x

Bj(x) and ∑
j=1

6

Bj(x)

Example: lidar data B-splines

require(splines)

lm.bs3 = lm(y ~ bs(range, df=3))

plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)

points(range, lm.bs3$fitted.values, type = 'l', col = "red", lwd = 2)

400 450 500 550 600 650 700

−
0.

8
−

0.
4

0.
0

Range

lo
g

ra
tio

Example: lidar data B-splines

lm.bs5 = lm(y ~ bs(range, df=5))

plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)

points(range, lm.bs5$fitted.values, type = 'l', col = "red", lwd = 2)

400 450 500 550 600 650 700

−
0.

8
−

0.
4

0.
0

Range

lo
g

ra
tio

Example: lidar data B-splines

lm.bs10 = lm(y ~ bs(range, df=10))

plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)

points(range, lm.bs10$fitted.values, type = 'l', col = "red", lwd = 2)

400 450 500 550 600 650 700

−
0.

8
−

0.
4

0.
0

Range

lo
g

ra
tio

Quick intro to penalized splines

Generalized Additive Models (GAMs)

� A model dependent on unknown smooth functions of
predictors.

� Typically estimated using penalized likelihood maximization.

� The basic idea of penalization is to discount models that
overfit the data.

� Key feature of GAMs: smoothness can be selected
automatically.

Example: lidar data penalized splines

E[y |range] = β0 + s(range)

library(mgcv) ## try ?mgcv for more info

gam.penspl <- gam(y ~ s(range)) ## no knots/df specified!

plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)

points(range, fitted(gam.penspl), type = 'l', col = "red", lwd = 2)

points(range, lm.bs5$fitted.values, type = 'l', col = "blue", lwd = 2)

400 450 500 550 600 650 700

−
0.

8
−

0.
4

0.
0

Range

lo
g

ra
tio

Another setting where splines could be useful

library(cdcfluview)

library(dplyr)

library(lubridate)

usflu <- get_flu_data("national", "ilinet", years=2010:2015)

usflu <- mutate(usflu,

date = as.Date(paste0(YEAR, sprintf("%02d", WEEK), "00"),

format="%Y%W%w"),

ili_weighted = X.UNWEIGHTED.ILI,

dec_date = decimal_date(date),

time_in_year = dec_date%%1)

ggplot(usflu, aes(x=date, y=ili_weighted)) + geom_point()

2

4

6

2011 2012 2013 2014 2015 2016
date

ili
_w

ei
gh

te
d

This is not a “real” time series analysis

These observations are time-series data

� Time is a “special” covariate: order matters, independence
assumption often violated.

� There are more formal and systematic methods of analyzing
time-series data that we are not going to discuss today, e.g.
ARIMA models. (If interested, consider STAT 597TS.)

� A few nice resources: Hydman and Athanasopoulos’s
Forecasting: Principles and Practice, at
https://www.otexts.org/fpp, or Shumway and Stoffer, Time
Series Analysis and Its Applications: with R examples.

https://www.otexts.org/fpp

Fit a trigonometric model
We could fit a seasonal model like this:

E[yt] = β0 + β1 · sin(2πt) + β2 · cos(2πt)

usflu <- usflu[!is.na(usflu$dec_date),] ## remove "week 53"

trig_mdl <- lm(ili_weighted~sin(dec_date*2*pi)+cos(dec_date*2*pi),

data=usflu)

usflu$trig_preds <- predict(trig_mdl)

ggplot(usflu, aes(x=date, y=ili_weighted)) + geom_point() +

geom_line(aes(y=trig_preds), color="red")

2

4

6

2011 2012 2013 2014 2015 2016
date

ili
_w

ei
gh

te
d

Fit a penalized splines model

library(mgcv)

spline_mdl <- gam(ili_weighted ~ s(time_in_year, bs="cc"), data=usflu)

usflu$spl_preds <- predict(spline_mdl)

ggplot(usflu, aes(x=date, y=ili_weighted)) + geom_point() +

geom_line(aes(y=trig_preds), color="red") +

geom_line(aes(y=spl_preds), color="blue")

2

4

6

2011 2012 2013 2014 2015 2016
date

ili
_w

ei
gh

te
d

Take-home points for spline approaches (1)

Splines can flexibly model non-linear relationships

� Can improve model fit because of relaxed linearity
assumptions.

� Caveat: spline models require careful graphical interpretation,
slopes may not be easily available/interpretable

Take-home points for spline approaches (2)

Do you want control over your knots?

� Your application may have explicit “change-points” (i.e.
interrupted time-series)

� In most cases, you do not want your spline model to be
sensitive to user input (i.e. knot placement)

� “Penalized splines” can reduce this sensitivity at the cost of
more complex model and estimation (More in ISL Chapter 7,
Biostat Methods 3, anything about Generalized Additive
Models (e.g. mgcv package and gam() function), one of
your projects?).

Small group lab exercise

� Without adding any additional predictors into your model,
experiment with different types of spline model fits. What is
the best model that you can find? What criteria did you use
to pick it?

� For that model, plot the residuals. What does the residual
plot tell you about the appropriateness of the model from
both a scientific and statistical perspective?

