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Lab 1: Introduction to linear regression

Cigarettes and carbon monoxide emissions

An abundance of research has been done to assess the direct health impacts of cigarette smoke. Studies have also
investigated the effects that different cigarette brands have on the environment based on their chemical make-ups.
While each chemical in cigarettes are considered hazardous to the smoker’s health by the United States Surgeon
General, in this lab we will be interested in seeing if their is an association between the amount of chemicals and
the amount of carbon monoxide emitted into the environment.

The data

The data set presented here is taken from the 3rd edition of Statistics for Engineering and the Sciences by
Mendenhall and Sincich (1992) and is a subset of the data produced by the Federal Trade Commission. This data
was found through the American Statistical Association website, and a fuller description of the data can be found
at http://www.amstat.org/publications/ jse/datasets/cigarettes.txt. Let’s load the data and look at summary of
the variables. Be sure to install the package RCurl in order to obtain the data from the internet.

library(RCurl)

URL <-getURL("http://www.amstat.org/publications/jse/datasets/cigarettes.dat.txt",

ssl.verifypeer=FALSE)

cigs <-read.table(text=URL)

names(cigs)<-c("brand","tar","nicotene","weight","CO")

summary(cigs)

Exercise 1 What type of plot would you use to display the relationship between CO and one of the
other numerical variables? Plot this relationship using the variable tar as the predictor. Does the
relationship look linear? If you knew how much tar was in a given brand of cigarettes, would you be
comfortable using a linear model to predict the carbon monoxide content of that brand?

If the relationship looks linear, we can quantify the strength of the relationship with the correlation coeffi-
cient.

cor(cigs$CO, cigs$tar)

Sum of squared residuals

Think back to the way that we described the distribution of a single variable. Recall that we discussed characteristics
such as center, spread, and shape. It’s also useful to be able to describe the relationship of two numerical variables,
such as CO and tar above.

Exercise 2 Looking at your plot from the previous exercise, describe the relationship between these
two variables. Make sure to discuss the form, direction, and strength of the relationship as well as
any unusual observations.
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Just as we used the mean and standard deviation to summarize a single variable, we can summarize the relationship
between these two variables by finding the line that best follows their association. Use the following interactive
function to select the line that you think does the best job of going through the cloud of points.

Note: You need to access this function by sourcing a function on GitHub using the following commands:

u <- "https://raw.githubusercontent.com/nickreich/stat-modeling-2015/gh-pages/assets/labs/plot_ss.R"

script <- getURL(u, ssl.verifypeer = FALSE)

eval(parse(text = script))

plot_ss(x = cigs$tar, y = cigs$CO)

After running the last command above, you’ll be prompted to click two points on the plot to define a line. Once
you’ve done that, the line you specified will be shown in black and the residuals in red. Note that there are 25
residuals, one for each of the 25 observations. Recall that the residuals are the difference between the observed
values and the values predicted by the line:

ei = yi − ŷi

The most common way to do linear regression is to select the line that minimizes the sum of squared residuals.
The squared residuals are represented in this plot with blue dashed lines.

Exercise 3 Try running the above command again, this time with a line that is not a good fit. What
happens to the squared residuals? Compare the sum of squares (given in the R output) of this poorly
fit line to the first line you fit. Are you suprised at these results?

Exercise 4 Run this code several more times trying to minimize the sum of squares each time. What
is the smallest sum of squares you can obtain? How does it compare to your neighbors? Compared
to the first line you drew, what adjustments did you make to reduce the RSS?

The linear model

It is rather cumbersome to try to get the correct least squares line, i.e. the line that minimizes the sum of squared
residuals, through trial and error. Instead we can use the lm function in R to fit the linear model (a.k.a. regression
line).

m1 <- lm(CO ~ tar, data = cigs)

The first argument in the function lm is a formula that takes the form y~ x. Here it can be read that we want
to make a linear model of CO as a function of tar. The second argument specifies that R should look in the cigs
data frame to find the CO and tar variables.

The output of lm is an object that contains all of the information we need about the linear model that was just
fit. We can access this information using the summary function.

summary(m1)

Let’s consider this output piece by piece. First, the formula used to describe the model is shown at the top. After
the formula you find the five-number summary of the residuals. The “Coefficients” table shown next is key; its
first column displays the linear model’s y-intercept and the coefficient of tar. With this table, we can write down
the least squares regression line for the linear model:
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ŷ = 2.74328 + 0.80098 ∗ tar

One last piece of information we will discuss from the summary output is the Multiple R-squared, or more simply, R2.
The R2 value represents the proportion of variability in the response variable that is explained by the explanatory
variable. For this model, 91.68% of the variability in carbon monoxide content is explained by the amount of tar
in the cigarette.

Exercise 5 Calculate β̂0 and β̂1 from the model of CO as a function of tar by hand (i.e. using
arithmetic/linear algebra and R as your calculator). Confirm that they match up with the values from
the fitted model using lm.

Exercise 6 What does the slope tell us in the context of the relationship between the amount of
carbon monoxide emitted into the environment and the amount of tar in the cigarette?

Exercise 7 Fit a new model m2 that uses weight to predict CO. Using the estimates from the
R output, write the equation of the regression line. How much of the variability in CO emission is
explained by the weight of the cigarette? Which model, m1 or m2, would you trust more to predict
CO emission? Explain.

Prediction and prediction errors

Let’s create a scatterplot of CO versus tar with the least squares line laid on top.

qplot(tar, CO, data=cigs)

ggplot(cigs, aes(tar, CO)) + geom_point() + geom_smooth(method="lm")

ggplot(cigs, aes(tar, CO)) + geom_point() + geom_smooth(method="lm", se=FALSE)

The fitted line can be used to predict y at any value of x. When predictions are made for values of x that are
beyond the range of the observed data, it is referred to as extrapolation and is not usually recommended. However,
predictions made within the range of the data are more reliable. They’re also used to compute the residuals.

Exercise 8 If you saw the least squares regression line and not the actual data, how much CO (mg)
would you predict to be emitted from a cigarette with 15 mg of tar? Is this an overestimate or an
underestimate, and by how much? In other words, what is the residual for this prediction?

Model diagnostics

To assess whether the linear model is reliable, we need to check for (1) linearity, (2) nearly normal residuals, and
(3) constant variability.

1. Linearity: You already checked if the relationship between CO content and amount of tar is linear using a
scatterplot. We should also verify this condition with a plot of the residuals vs. tar.

qplot(tar, m1$residuals, data=cigs) + geom_hline(yintercept=0, linetype=3)

Exercise 9 Is there any apparent pattern in the residuals plot? What does this indicate about
the linearity of the relationship between CO content and tar?

2. Nearly normal residuals: To check this condition, we can look at a histogram
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qplot(m1$residuals)

or a normal probability plot of the residuals. Recall that any code following a # is intended to be a comment
that helps understand the code but is ignored by R.

qqnorm(m1$residuals)

qqline(m1$residuals) # adds diagonal line to the normal prob plot

Exercise 10 Based on the histogram and the normal probability plot, does the nearly normal
residuals condition appear to be met?

3. Constant variability:

Exercise 11 Based on the plot in (1), does the constant variability condition appear to be met?

On Your Own

1. Produce a scatterplot of CO and nicotene and fit a linear model. At a glance, does there seem to be a
linear relationship?

2. How does this relationship compare to the relationship between CO and tar? Use the R2 values from the
two model summaries to compare. Does nicotene seem to predict CO better than tar? How can you tell?

3. Which variable best predicts CO out of the three in this data set? Support your conclusion using the
graphical and numerical methods we’ve discussed.

4. Check the model diagnostics for the regression model with the variable you decided was the best predictor
for CO content.

5. Derive the formulas for β0 and β1. Show your work.

6. Write your own R function that takes as input y and x vectors of data and outputs estimates of β0 and β1
using the direct calculation from the formulas you derived in the last step. Choose one of the simple linear
regression models that you ran in this lab. Compare the output from your function to the outputs from a
call to lm(). In your write-up, be sure to show the code that defines your function.
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